Test fixture pressure sensors – Pressure measurement in the aircraft engine compartment

Test fixture pressure sensors – Pressure measurement in the aircraft engine compartment

As many engineers have found to their chagrin, dealing with pressure measurements in the engine compartment of an aircraft can be a delicate and frustrating experience. The heat, vibrations, orientation, and a multitude of other factors come into play. So how can we hope to develop a method for consistent and accurate readings? Well naturally, we’re left with hours, days, and most likely months of testing! However, we still need a test sensor that can rise to the occasion, function through all these changing conditions, and continually produce correct and repeatable results. We are engineers after all, and repeatable results are an occupational necessity. Thankfully for us, STS has stepped up to the plate to provide a complete series of pressure sensors to meet all of our testing needs. Where those needs can range from specific temperature requirements, size constraints, sealing material, and electrical output signals. All of these requirements will be covered in the following article as we address STS pressure transmitter usage for our testing needs.

Continuing with our engine compartment example, let’s zero in on the oil pressure. One of the first concerns while selecting a pressure sensor for this test is temperature resistance. Naturally, it gets quite warm next to an aircraft engine; therefore, we must ask ourselves, can the sensor be mounted alone or does it need a heat shield? More importantly, will the sensor even function properly when the components begin to heat up? Erratic oil pressure readings are very low on the wish list for a pilot! Therefore, both are valid points; but don’t fret too much. The STS line of pressure sensors include excellent temperature resistance, up to 125° C. This, in most cases, takes care of our initial temperature concerns and allows the sensor to be mounted it the most logical position in the engine compartment without the need to worry about temperature interference. Furthermore, we can fiddle, finagle, and fine-tune the test sensor’s location without constantly looking over our shoulder to see if the increased temperature will manipulate our results.  This provides us with a great deal of flexibility when constructing our test plan. 

Along the same subject of mounting locations, the size of the sensor is also crucial. Trying to wedge an ungainly box next to your sleek engine for a series of oil pressure tests would undoubtedly result in a few raised eyebrows amongst all those concerned. Additionally, space in this area is constantly at a premium. However, that is one bridge you don’t have to cross as STS has produced a very compact and low profile pressure sensor that makes for convenient mounting throughout your testing area of operations. Thanks to the advanced customization options, which we’ll discuss later, the exact dimensions vary from sensor to sensor. However, they tend to fall within the 50-60mm (2.0-2.4”) range. This small size allows for easy fixturing using common Adel clamps or any other off the shelf bracket without spending the time to design a custom mounting scheme, or trying to dream up a new overly complicated fixturing method every time the sensor has to be relocated to find the optimal position for oil pressure readings. All in all, this is certainly a time saver when we are focused on a timely and efficient series of tests.  

The last factor that we’ll touch on that can be invaluable for our pressure testing is customization. More often than not, the pressure sensors that are readily available on the market for such a test have a well-defined scope that they operate in. A single configuration that works best in ‘this’ pressure range, for ‘that’ frequency of collection, and it all comes with just ‘this’ product design. However, STS pressure sensors offer several options and customizations that give us the freedom to not limit our test based on our sensor’s individual capabilities.  

For our example, we of course must have a sealing material that with neither contaminate the oils, nor degrades with constant exposure. Well, we have several options for the sensor seals that can accomplish just that, including EPDM and Viton to ensure that the sensor is operating at peak performance for the entire test. Or, conversely, we can opt for a metallic sealing option to ensure proper test results. What’s more, perhaps we need a frontal diaphragm connection, with a PUR cable, along with 20 mA output signal. STS can deliver exactly that, along with any number of other combinations to ensure that the process connection, electrical and output signals, pressure connection, and seals are exactly what we need. In essence the sensor is cherry picked for our test and not simply some component we need to shoehorn into the test setup.  

To recap, we are required to design a series of oil pressure tests; and as with most tests, many of the factors will be manipulated. The heat, mounting method, pressure range and a mind-numbingly large number of other issues will all be changing constantly over the course of the test. To cap it all off, we need a test pressure transmitter that can fit into this envelope and consistently produce accurate results. Well we can at least nip that problem in the bud straight away by incorporating an STS pressure transmitter for our testing regimen. The high temperature and pressure ranges, combined with custom seals, process connections, electrical and signal outputs, and overall design ensure that this is a sensor that can pre-configured to slide seamlessly into your testing apparatus, and not require that your entire system by reconfigured to suit the sensor.

Selecting your pressure sensor: A how-to guide for the aerospace engineer

Selecting your pressure sensor: A how-to guide for the aerospace engineer

Devising and creating an aircraft is a daunting task, and no small feat by any means. The endless calculations, designing, simulations, and re-designing seems to be a perpetual process; however, we will eventually reach the milestone of intensive testing! This is a very exciting process, all the 3D parts you’ve designed, the systems you’ve pieced together, and all the components are now sitting right in front of you. It is time to prove to yourself, and your managers, that everything will operate flawlessly, but don’t get ahead of yourself! To do that, we need top-notch data recording equipment to verify our system’s performance. What’s more, we need test sensors that can function in the most extreme conditions both inside and outside the aircraft. Well, that is why STS is here, to furnish us with reliable pressure measurement transmitters to ensure that our rounds of pressure testing work just as smoothly as the system we designed. We’ll spend the rest of this article presenting a step by step guide to fully acquaint you with the full range of options that STS offers and how to integrate those into our system.

Accuracy

Step one, we need to take a close look at the aircraft system we’re testing, and determine the precision required for our data collection. For example, the hydraulic system that controls the aircraft’s brakes often operates within a specific pressure range, and this range is large enough that extraordinary precision is not a requirement when selecting a test sensor. Therefore the STS option of ± 0.25% FS would be a suitable option. On the other end of the spectrum, the oil pressure must be monitored much more judiciously when compared to the brake hydraulics. With that in mind, we can select the STS option for a high precision pressure transmitter with the highest degree of accuracy available, namely ± 0.05% FS to ensure that the oil pressure remains at its peak level throughout the engine system. 

Temperature  

Now that we’ve established the required accuracy for our application, let’s move on to integrating the pressure sensor into our test aircraft system. Naturally, the pressure oriented systems on an aircraft are exceptionally diverse in terms of size, operating temperature, and pressure medium; consequently, we need the freedom to cherry-pick every one of these features for our sensor. 

For the next step in the selection process, let us turn our attention to the operating temperature. In an aircraft, your test pressure sensor could potentially be recording data within the sweltering confines of the engine compartment. Conversely, it could be located externally, measuring the Pitot pressure or perhaps the de-icing fluid pressure in which case the operating temperature will be drastically lower than the engine compartment. Never fear, STS offers an impressive range of operating temperatures from -25 to 125° C. This base range will by and large cover the majority of our aerospace pressure needs. To sweeten the deal, all STS sensors are manufactured to include a compensated temperature range, meaning the inherent measurement error is drastically lower within the limits specified above. This is an exceptionally beneficial feature when completing intensive testing on our pressure systems! 

The aforementioned temperature range is by no means set in stone. When the need arises, we can opt to have our sensor outfitted with cooling fins to boost to max temperature to 150° C. Such a need might arise if the sensor was to be located next to the engine exhaust system which can radiate a significantly large amount of heat. Furthermore, we can choose for our sensor’s minimum temperature to be lowered -40° C if the sensor was to be exposed to a particularly high altitude. That covers the selection process for your sensor’s temperature resistance; always keep your operating environment in mind!

Process Connection

As previously mentioned, the sizes and gauges of the different pressure systems within an aircraft are far from constant. Therefore, the next step in our selection process is to determine the optimal location for the sensor, and select a connector that will allow the sensor to fit in that particular location. For example, take an aircraft brake system. The hydraulic system will consist of various tube sizes and components, but once you have selected the exact location for your sensor, the process connection can be chosen. STS offers a range of sizes and diaphragms including G ¼ M and G ½ M with the additional choice for Hastelloy and frontal diaphragms, amongst other choices. This wide range of possible selections ensures that we can order a sensor that will slide into our test system perfect without any special retrofitting in order to install, which lowers the workload for us!  

Seals 

The final major component of our test sensor that we’ll cover is the sealing materials that are available to us. As with the process connector, the material to select to seal your sensor is highly dependent on the fluid that makes up your pressure system. Luckily for us in the aerospace field, our pressure systems will seldom experience corrosive, acidic, or other unsavory fluids. Nevertheless, we still must give some thought to our seals. In the case of our hydraulic system for landing gear, the standard choice is Nitrile (NBR) as our seal. This rubber-like material is ideally suited for this application in addition to being resistant to oils and other lubrication materials. However, if we’re expecting high temperatures or other harsh conditions that are present in an engine compartment then Viton would be a much more suitable choice with its improved temperature resistance and durability. Last but not least, EPDM rubber has a proven track record when dealing with brake fluids. These are only three of the many sealing options that STS offers, with the main takeaway being that not all seals are interchangeable. Research your system, the options available, and make the best choice to ensure optimal sensor results! 

 

Now you are fully prepared to begin the pressure sensor selection process for your aerospace testing! We’ve covered the level of accuracy required for your sensor, which is dependent on the exact system in which the sensor is located. We then moved on to determining the correct level of temperature resistance required for our individual applications. Followed by the process connection where we can select various sizes and diaphragms to ensure that the sensor is always tailored to our exact needs. Our last point was to explain the primary differences between the many seal options that are available to you, and the ideal application of each one. With this information, you can look at the primary components of your test pressure sensor and make the best selections to ensure that your sensor is quite literally made just for your use!