Deprecated: Der Hook wp_smush_should_skip_parse ist seit Version 3.16.1 veraltet! Verwende stattdessen wp_smush_should_skip_lazy_load. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
- Seite 2 von 17 - STS Switzerland (DE)
Deprecated: Der Hook wp_smush_should_skip_parse ist seit Version 3.16.1 veraltet! Verwende stattdessen wp_smush_should_skip_lazy_load. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Verlässliche Füllstandsüberwachung im Kohlebergbau

Verlässliche Füllstandsüberwachung im Kohlebergbau

Bergwerke und Tagebaue sind für ihre rauen Arbeitsbedingungen bekannt. Das trifft auch auf die eingesetzte Technik zu. Darum braucht es widerstandsfähige und zuverlässige Messinstrumente zur Überwachung des Grundwassers.

In Australien liegen zehn Prozent des weltweiten Kohlevorkommens. Als führender Kohle-Exporteur ist der Kohlebergbau einer der wichtigsten Wirtschaftsfaktoren des Kontinents. Die Förderung des Rohstoffs ist jedoch nicht ohne Tücken. Die Betreiber eines australischen Kohletagebaus kamen auf STS zu, da sie nach einem Drucktransmitter zur Füllstandsüberwachung in bis zu 400 Meter Tiefe suchten.

Minenarbeiten haben einen starken Einfluss auf das Grundwasser. Die den Kohlebergbau umgebenden Grundwasserleiter werden entwässert, was zum Absinken des Absenkungstrichters führt. Dieses Absinken verändert die natürlichen unterirdischen hydrologischen Bedingungen, indem Wege geringeren Widerstands geschaffen werden. Das führt dazu, dass Wasser in die offene Grube und die unterirdischen Arbeiten eindringt. Daher muss das stetig nachfliessende Wasser kontinuierlich aus dem Tagebau gepumpt werden, um eine reibungslose und sichere Förderung des Rohstoffs zu gewährleisten.

Um den Grundwasserstand und die zur Entwässerung eingesetzten Pumpen zu überwachen, brauchten die Betreiber des Koheltagebaus einen Drucktransmitter zur Überwachung des Füllstands, der ihren Anforderungen entspricht. Gefordert waren ein Druckmessbereich von 0 bis 40 bar (400 mH2O) Umgebungsdruck sowie eine Kabellänge von 400 Metern. Die bis dahin von STS angebotene Lösung, der ATM.ECO/N/EX, kam allerdings nur auf 25 bar und eine Kabellänge von 250 Metern.

Da STS aber auf kundenspezifische Druckmesslösungen spezialisiert ist, stellte diese Herausforderung keine grosse Hürde dar. Kurzerhand wurde der eigensichere Drucktransmitter für Füllstand ATM.1ST/N/Ex entwickelt, der den Druckanforderung genau entspricht und mit einem 400 Meter langen Teflonkabel ausgestattet ist. Auch die Präzision weiss mit 0,1 Prozent zu überzeugen. STS entschied sich bei der Entwicklung des neuen Drucktransmitters für ein Teflonkabel, eine versiegelte Kabelverschraubung und ein offenes Entlüftungsrohr (PUR ist dafür zu weich). Darüber hinaus gibt es ein verschraubbares Ballastgewicht, um eine gerade und stabile Messposition sicherzustellen. Die ebenfalls aufschraubbare Zugentlastung aus Edelstahl hilft dabei, die Spannung auf dem elektrischen Kabel zu entlasten. Wie es die Gerätebezeichnung bereits verrät, verfügt es über die EX-Zertifizierung für den Einsatz in explosionsgefährteten Bereichen.

ATM.1ST/N/Ex mit  Zugentlastung (links) und Ballastgewicht (rechts), jeweils verschraubbar.

Als Experte für kundenspezifische Drucktransmitter konnte STS den ATM.1ST/N/Ex in weniger als drei Wochen liefern.

Die Eigenschaften des ATM.1ST/N/Ex im Überblick:

  • Druckmessbereich: 1…250 mH2O
  • Kennlinie: ≤ ± 0.1 % FS
  • Gesamtfehler: ≤ ± 0.30 %FS (-5…50 °C)
  • Betriebstemperatur: -5…80 °C
  • Mediumtemperatur: -5…80 °C
  • Ausgangssignal: 4…20 mA
  • Materialien: Edelstahl, Titan
  • Elektronische Kompensation
  • Beliebige Prozessanschlüsse erhältlich
Druckmessung in abrasiven Medien mit Vulkollan®-Membran

Druckmessung in abrasiven Medien mit Vulkollan®-Membran

Gewöhnlich sind Drucksensoren als Edelstahl oder Titan-Ausführungen erhältlich. Damit sind alle gängigen Prüfstandsanwendungen oder Überwachungsaufgaben abgedeckt. Kommt es aber zu Kontakt mit besonders abrasiven Medien, braucht es zusätzlichen Schutz. Eine zusätzliche Vulkollan®-Membran kann den Ansprüchen oft schon genügen.

Bevor wir uns zwei konkreten Anwendungsbeispielen zuwenden, einige einleitende Worte zum Stoff an sich: Vulkollan® ist die Handelsbezeichnung für Polyester-Urethan-Kautschuk, einem Polyurethan-Kunststoff mit elastischen Eigenschaften sowie guter chemischer und mechanischer Beständigkeit. Der gummielastische Werkstoff wird in verschiedenen Varianten als Schaum, zelliger Weichkunststoff sowie als Massivkunststoff verwendet. Während die ersten beiden Varianten vorwiegend in der Molchtechnik eingesetzt werden, wird der Massivkunststoff zu Rädern, Rollen und Ummantelungen verarbeitet. Hier liegt der Temperatureinsatzbereich bei -20 bis +80 Grad Celsius.

Kontaktmedium Beton

Ein Marktführer im Bereich Spezialtiefbau kontaktierte STS auf der Suche nach einem Drucksensor, der sich bedenkenlos in einem fliessenden, abrasiven Medium einsetzen lässt. In diesem Fall ging es konkret um Beton. Der Tiefbauspezialist stellt hydraulisches Equipment her, das Löcher in die Erde bohrt und diese mit Beton auffüllt, um Pfähle zu erhalten.

Damit diese Betonpfähle eine stabile Struktur aufweisen, muss ein kontinuierlicher Betonfluss sichergestellt werden. Der Beton wird über ein Rohr in das Loch gefüllt. Nachdem das Rohr in das Loch eingeführt wurde, kann es passieren, dass der Beton das Innere des Rohrs verstopft – es kommt zu einer Unterbrechung des Vorgangs.

Um dies zu verhindern, sollte ein Drucksensor in das Innere des Rohres eingesetzt werden. Da der Beton mithilfe einer Pumpe durch das Rohr in das gebohrte Loch befördert wird, lässt sich eine Verstopfung durch einen hohen Druck im Inneren des Rohres leicht erkennen. Für diese Aufgabe kam ein Edelstahl-Drucksensor nicht in Frage, da er dem Beton nur über kurze Zeit standgehalten hätte.

Um diese Herausforderung zu meistern, schlug STS vor, einen Flanschsensor mit einer zusätzlichen Vulkollan® -Membran auszurüsten. Durch diesen Schutz erreicht der verwendete Sensor eine Lebensdauer von einem Jahr bei 5 Prozent Gesamtfehler. Die mechanische Konstruktion sowie die elektrischen Anschlüsse waren eine Sonderanfertigung, die in kurzer Zeit bereitgestellt werden konnte.

Füllstandsmessung in Trimmtanks

Ein Hersteller für Schiffskontrollsysteme trat auf der Suche nach einer zuverlässigen Lösung zur Wasserstandsmessung in Trimmtanks an STS heran.

Trimmtanks werden benutzt, um die Position des Masseschwerpunkts eines Wasserfahrzeuges zu beeinflussen. Frachtschiffe werden zum Beispiel so konstruiert, dass bei voller Beladung die Konstruktionswasserlinie mit der tatsächlichen Wasserlinie zusammenfällt. Wenn sie aber ohne Ladung in See stechen, taucht der Rumpf soweit aus dem Wasser auf, dass der Bug zu grossen Teilen aus dem Wasser ragt. Aufgrund des Maschinengewichts liegt der Rumpf zwar tiefer, unter Umständen aber nicht tief genug, damit die Propeller noch ausreichend ins Wasser eintauchen – das Schiff ist in diesem Fall also manövrierunfähig. Um dem entgegenzuwirken, werden die Trimmtanks mit Wasser gefüllt.

Die Sensoren zur Überwachung des Füllstands kommen aber nicht nur mit Salzwasser in Kontakt (dafür würden Titangehäuse ausreichen), sondern auch mit Sand, kleinen Steinen oder Muscheln. Um hier die Lebensdauer des Sensors zu optimieren, wurde dessen Membran mit einem Vulkollan®-Film überzogen.

Bild 1: Beispiel eines Drucktransmitter mit Vulkollan® Folie

Dank Vulkollan® können Drucksensoren zur Verwendung in abrasiven Medien optimiert werden. Dies gilt jedoch nicht für explosionsgefährdete Stoffe oder Säuren.

Mehr zum Thema Medienkompatibilität piezoresistiver Druckaufnehmer lesen Sie hier.

Darüber hinaus müssen Anwender bedenken, dass der zusätzliche Vulkollan®-Schutz die Präzision des Sensors negativ beeinflusst. Auch wird das Temperaturverhalten instabiler.

Daher geht nichts über eine umfassende und kompetente Beratung durch Experten bei der Suche nach einer geeigneten Druckmesslösung für abrasive Medien.

Druckspitzen in hydraulischen Anlagen: Ein Risiko für Sensorik und Anlagen

Druckspitzen in hydraulischen Anlagen: Ein Risiko für Sensorik und Anlagen

Druckspitzen kommen in praktisch allen gas- und flüssigkeitsgefüllten Rohrleitungen vor. Die in nur wenigen Millisekunden auftretenden Drücke können den Überlastdruck eingesetzter Druckmessumformer übersteigen und diese zerstören.

Bemerkt werden Druckspitzen, also kurzzeitig auftretende sehr hohe Drücke, in der Regel erst, wenn der Schaden bereits entstanden ist. Sie sind die Folge von Druckstössen und anderen physikalischen Phänomenen (Kavitation, Mikro-Diesel-Effekt), die überall dort auftreten, wo Flüssigkeiten oder Gase durch Rohre transportiert werden. Allerdings sind Druckspitzen bei Gasen aufgrund deren vergleichsweise hohen Kompressibilität weniger von Bedeutung und nur selten eine Gefahr. Im Zusammenhang mit Wasserleitungen werden oft auch die Begriffe Wasserschlag oder Wasserhammer genutzt. Mit diesen Begriffen ist letztlich eine dynamische Druckänderung der Flüssigkeit gemeint. Wenn beispielsweise ein Ventil schnell geschlossen wird, stoppt der Wasserfluss augenblicklich. Das löst eine Druckwelle aus, die das Medium entgegen der Fliessrichtung mit Schallgeschwindigkeit durchläuft und wieder zurückreflektiert wird. Es kommt binnen Millisekunden zu einem starken Druckanstieg, der Schäden an Drucksensoren und Anlagen verursachen kann (Schäden an Rohrarmaturen und Rohrbefestigungen sowie an Pumpen und deren Fundamenten etc.). Zuerst trifft es in der Regel allerdings die Messgeräte, auf die wir uns im Folgenden konzentrieren. Diese Schäden können sich in Form eines winzigen „Durchschusses“ oder Verformungen auf dem Siliziumchip äussern (siehe Abbildungen 1 und 2).

Abbildung 1: „Durchschuss“ als Folge einer Drucksppitze

Abbildung 2: Verformungen infolge von Druckspitzen

Übersteigt der auf den Druckmessumformer einwirkende Druck den Überlastdruck, erleidet dieser bleibende Schäden. Dabei gibt es zwei mögliche Szenarien: So paradox es klingen mag, ist im Falle einer Druckspitze die völlige Zerstörung des Messinstruments dabei die noch glimpflichste Folge. Denn Anwender bemerken in diesem Fall den Schaden sofort. Wird der Sensor infolge einer Druckspitze lediglich verformt, arbeitet er zwar weiter, liefert allerdings nur noch ungenaue Messwerte. Die finanziellen Folgen sind ungleich höher als bei einem gänzlich zerstörten Sensor.

So lassen sich Schäden durch Druckspitzen vermeiden

Der goldene Weg, um Schäden durch Druckspitzen zu verhindern, ist die Integration von Pulsationsdämpfern bzw. Druckdrosseln. Andere Mittel wie der Einsatz von Ventilen würden hier nicht zum Ziel führen, da sie zu langsam sind, um in Millisekunden auf entstehende Druckspitzen zu reagieren.

Der Sinn einer Drossel ist es, Druckspitzen so abzufedern, dass sie nicht mehr den Überlastdruck des Druckmessumformers überschreiten und diesen nicht mehr beschädigen können. Zu diesem Zweck wird die Drossel in den Druckkanal vor die Sensorzelle platziert. Dadurch treffen Druckspitzen nicht mehr direkt und ungebremst auf die Membran, da sie sich erst an der Drossel vorbeischlängeln müssen:

Abbildung 3: Druckkanal mit Druckdrossel

Aufgrund des sehr guten Schutzes vor Druckspitzen ist der Einsatz von Druckdrosseln die beste Variante. Dennoch ist sie nicht ohne Tücken. Denn besonders in Medien mit Fest- und Schwebstoffanteil kann es durch Verkalkungen und Ablagerungen zu einer Blockierung des Druckkanals kommen. In der Folge kommt es zu einer Verlangsamung des Messsignals. Werden Drosseln also in entsprechenden Anwendungen eingesetzt, sollte hier regelmässig gewartet werden.

Ein ergänzender Schutz vor Druckspitzen kann abweichend zum Standard durch eine höher ausgelegte Überdruckfestigkeit geleistet werden. Ob das ratsam ist, hängt von der jeweiligen Anwendung ab: Sind hohe Genauigkeitswerte gefragt, können diese bei sehr hohen Überduckfestigkeiten im Verhältnis zum Messbereich unter Umständen nicht mehr erzielt werden.

Der Dieseleffekt in hydraulischen Anlagen: Materialschäden sind die Folge

Der Dieseleffekt in hydraulischen Anlagen: Materialschäden sind die Folge

Wie es der Name schon verrät, nimmt der Begriff Dieseleffekt auf den Verbrennungsprozess in einem Dieselmotor Bezug. Zu beobachten ist er in hydraulischen Anlagen. Neben Druckspitzen sind Ölalterung, Ablagerungen und die Zerstörung von Dichtungen die Folgen.

Der Dieseleffekt tritt als Folgeerscheinung von Kavitationen auf. Daher wollen wir zunächst die Entstehungsbedingungen von Kavitationen in Hydrauliksystemen betrachten, bevor wir uns dem Dieseleffekt zuwenden.

Kavitation in Hydrauliksystemen

Hydrauliköle enthalten abhängig von Gas, Temperatur, Flüssigkeit und Druck gelöste Luft. Eine Kavitation ist letztlich eine Luftausscheidung aus dem Hydrauliköl. Dazu kommt es, wenn das Öl einem bestimmten Druck oder einer Scherbewegung ausgesetzt ist. Das kommt in der Praxis an Saugleitungen, Pumpeninnenräumen, bei Querschnittverengungen und an Stellen eines Hydrauliksystems vor, wo Pulsationen auftreten. Wenn die in Bewegung befindliche Ölmasse reisst, bilden sich Hohlräume, in die feinste Luftbläschen freigesetzt werden.

Der Dieseleffekt

Wenn die als Folge von Kavitation entstandenen Luftblasen, die auch Ölpartikel enthalten, einem hohen Druck ausgesetzt sind, kommt es zu einer drastischen Temperaturerhöhung in den Bläschen. Diese starke Temperaturerhöhung führt zum Dieseleffekt, also zu Verbrennungen im hydraulischen System. Dieser Verbrennungsprozess läuft binnen Millisekunden ab.

Die Folgen von Kavitation und Dieseleffekt

Kavitation kann eine Vielzahl von negativen Folgen haben, darunter zählen Materialzerstörungen an Pumpgehäusen und Überdruckventilen, das Absaugen von Dichtelementen wie O-Ringen, eine veränderte Durchflusscharakteristik, Wirkminderung bei Pumpen und Getrieben durch Füllungsverluste, Geräusche, Druckstösse mit Druckspitzen, die den Systemdruck überschreiten sowie der Dieseleffekt, der sich in Form von Ölalterungen, Verbrennungsrückständen sowie zerstörten Dichtungen äussert.

Die Folgen von Kavitation und Dieseleffekt sind nicht immer sofort ersichtlich. Oftmals werden sie erst bemerkt, wenn es schon zu spät ist und Reparaturbedarf an den hydraulischen Anlagen besteht. Druckspitzen als Folge von Kavitation und Dieseleffekt können auch zur Überwaschung im System montierte Drucktransmitter beschädigen. Dabei wird durch die plötzliche Druckerhöhung im System die Membran des Druckmessumformers „durchschossen“ (mehr dazu lesen Sie hier).

In Anbetracht der gravierenden Folgen von Kavitation und Dieseleffekt sind entsprechende Massnahmen zur Vermeidung dieser Phänomene zu ergreifen. Dazu gehören eine ausreichende Füllung in den Saugräumen, geringe Strömungsgeschwindigkeiten sowie die Vermeidung scharfer Kanten, Umlenkungen und pulsierender Drücke.

Genaue Druckmessung ist für die Entwicklung einer elektrischen Ölpumpe entscheidend

Genaue Druckmessung ist für die Entwicklung einer elektrischen Ölpumpe entscheidend

Angetrieben durch die steigenden weltweiten Emissionsziele, setzen OEMs zur Reduzierung von Kraftstoffverbrauch und Treibhausgasemissionen in zunehmendem Maße auf die Elektrifizierung. Die Wahl fällt in diesem Zusammenhang häufig auf das Hybrid-Elektrofahrzeug, welches oft von einem stark verkleinerten Motor angetrieben wird.

Das Problem dieser Downsizing-Motoren besteht darin, dass Fahrbarkeit und Leistung durch Energieraubende Hilfssysteme stark beeinträchtigt werden. Glücklicherweise können diese parasitären Verluste deutlich reduziert werden, indem traditionell mechanische Komponenten durch elektrisch angetriebene Einheiten ersetzt werden. Aus diesem Grund gelangen elektrisch angetriebene Pumpen, insbesondere für den Antrieb von Öl- und Wasserpumpen, sehr schnell in die Serienproduktion.

Abbildung 1: Beispiel für eine elektrische Ölpumpe
Bildquelle: Rheinmetall Automotive

Aber auch wenn die Vorteile offensichtlich sind, ist die Elektrifizierung, insbesondere der Ölpumpe, technisch komplex: Ingenieure wollen das Öl nicht nur mit einem bestimmten Volumenstrom und Druck verteilen, sondern möchten diese Variablen auch intelligent an die Motoranforderungen anpassen.

Um die Leistung zu optimieren, ist es wichtig, dass Reibungs- und Pumpverluste durch die sorgfältige Steuerung des Ölstroms in die verschiedenen Zweige des Ölkreislaufs minimiert werden und gleichzeitig stets der richtige Druck herrscht.

Die Simulation beruht auf genauen Messdaten von Öldruck und Volumenstrom auf dem Prüfstand

Eine elektrisch angetriebene Ölpumpe besteht aus drei Teilsystemen – Pumpe, Motor und elektronische Steuerung. Daher ist die primäre Herausforderung jeder neuen Anwendungsentwicklung die effiziente Integration dieser Teilsysteme, um Gesamtgröße und -gewicht sowie die Anzahl der Komponenten zu verringern und gleichzeitig die Leistung zu optimieren.

Die wichtigste Aufgabe der Ölpumpe besteht darin, bei optimalem Druck eine bestimmte Ölmenge zu liefern. Aus diesem Grund beginnt der iterative Designprozess mit dem „Pumpengetriebe“. In den meisten Anwendungsfällen muss die Pumpe einen Druck von mehr als 1 bis 2 bar, oftmals bis zu 10 bar erzeugen.

Wie auch sonst üblich in der Motorenentwicklung, kommt eine Kombination aus Simulation und Prüfung unter realen Bedingungen zum Einsatz, um das Design zu beschleunigen.

Die Entwurfsiterationen beginnen mit der Erstbewertung des volumetrischen Wirkungsgrades anhand von Versuchsergebnissen, die von ähnlichen Pumpen und Anwendungen gesammelt wurden. Dazu gehören Pumpengeschwindigkeit, Öltemperatur, Druck und Volumenstrom.

Da es wichtig ist, dass die für die Schätzung herangezogenen Daten akkurat sind, muss die Datenerhebung mit sehr zuverlässigen, präzisen Messgeräten durchgeführt werden, die unter den im Motorraum herrschenden extremen Bedingungen genaue Messwerte liefern können.

Um die Genauigkeit und Reproduzierbarkeit zu gewährleisten, ist es von zentraler Bedeutung, dass zur Druckmessung nur die besten Qualitätssensoren verwendet werden. Diese Drucksensoren müssen nicht nur in einem großen Druck- und Temperaturbereich zuverlässige Messwerte liefern, sondern auch Vibrationen standhalten können.

STS hat im Laufe der Jahre Sensoren entwickelt, die den Anforderungen von Produzenten (OEM), Teilelieferanten und Motordesignexperten in der Motorenentwicklung gerecht werden.

Die Entwicklung einer elektrischen Ölpumpe, die die mechanische Variante übertrifft 

Auf der Grundlage der Daten zu den hydraulischen Anforderungen bei verschiedenen Volumenströmen, Förderdrücken und Öltemperaturen wird ein erster Entwurf des Getriebes angefertigt. Mithilfe der MatlabSimulink-Software können die Informationen bezüglich des Verhaltens des physikalischen Systems in einen eindimensionalen Code umgewandelt werden.

In diesem Stadium ist zu beachten, dass zur Erzeugung des erforderlichen Durchflusses bei einem bestimmten Druck eine Drehzahl gewählt werden sollte, die die beste Bauform von Motor und Pumpe ohne Kavitationsprobleme oder Strömungsgeräusche ermöglicht: Demnach liegt ein typischer Drehzahlbereich für den Dauerbetrieb in der Regel zwischen 1500 und 3500 U/min.

Im nächsten Schritt können mit der Simulationssoftware LMS Imagine verschiedene Designs erzeugt werden. Mithilfe der Lab Amesim-Software werden die Designparameter – zum Beispiel die Anzahl der Zähne und die Exzentrizität – optimiert, während gleichzeitig alle Randbedingungen für Druck, Durchfluss und Temperatur erfüllt werden.

Nachdem die geometrischen Merkmale der berechneten Hydraulik implementiert und das vorläufige Design abgeschlossen wurden, kann das erforderliche Gesamtdrehmoment, um die Pumpe in kritischen Betriebspunkten anzutreiben, wie folgt berechnet werden:

Mgesamt = MH + MCL + Mη

Wobei:

  • MH für das hydraulische Drehmoment steht, das für die Erzeugung des Drucks und Durchflusses erforderlich ist
  • MCL für die Coulombsche Reibung steht, die dort entsteht, wo sich trockene oder geschmierte Kontakte zwischen Gleitteilen befinden
  • Mη für die viskose Reibung steht, die durch die Fließbewegung in Freiräumen entsteht

Im Anschluss an die Designphase werden Prototypen gebaut, um diese auf einem Motorprüfstand unter realen Bedingungen zu testen.

Nochmals werden Öldruck, Volumenstrom und Temperatur bei verschiedenen Motor- und Pumpgeschwindigkeiten gemessen, um die durch die Simulation gewonnenen Ergebnisse zu bestätigen. Wenn die Ergebnisse den Spezifikationen entsprechen, ist das Entwicklungsprogramm abgeschlossen und das Projekt geht in die Produktionsphase.

Es liegt auf der Hand, dass für eine optimale Leistungsfähigkeit und Haltbarkeit alle Messungen genau aufgezeichnet werden müssen; aber die Relevanz der durch die Drucksensoren erzeugten Messdaten überwiegt möglicherweise alles andere – zu geringer Druck an jedem beliebigen Punkt kann zu einem katastrophalen Fehler führen, während Überdruck Energie verschwendet und zu Problemen mit den Öldichtungen führen kann.

Preventing Corrosion Caused by Aggressive Liquids in the Food Industry

Preventing Corrosion Caused by Aggressive Liquids in the Food Industry

When testing proportional pressure regulators as part of the development of complex hydraulic systems, high impulse capability and precision are required from the pressure measurement sensors employed.

Carbonic acid and alcohol can put a strain on measuring equipment. A manufacturer of automatic in-line and laboratory liquid analyzers has approached STS to find a durable and accurate pressure transmitter.

When exposed to aggressive fluids such as alcohol or carbonic acid, standard materials suffer from corrosion. For example, carbonic acid causes an increase in the hydron (H +) concentration and therefore leads to hydrogen corrosion. Once the corrosion eats through the membrane of the pressure sensor, it becomes unusable. That is why regular stainless steel will not suffice for applications with high levels of carbonic acid.

Other than being highly corrosion-resistant, the pressure sensor for this particular application in a bottling plant has to be able to deal with extremely low pressures close to a vacuum. As this application is part of the food industry, hygiene standards are very high. The near-vacuum conditions that the equipment is regularly exposed to is part of the sterilization process (similar, although not as extreme, as what happens in an autoclave). Low pressures below 0 bar can present a danger to the integrity of pressure sensors. The vacuum may cause the membrane to be sucked off from it position in the sensor. False measuring results or a completely broken sensor are the consequence.

Due to these requirements, we had to assemble a customized solution for this manufacturer of automatic in-line and laboratory liquid analyzers based on the pressure transmitter ATM.ECO. As material, we chose an extremely corrosion-resistant Hastelloy steel. To ensure membrane stability during low pressure conditions, we applied a special glue to fixate the membrane in place.

Since the pressure transmitter operates under room temperature conditions in this application, no special temperature compensation was necessary. The accuracy of 0,25 percent of the total scale is also more than enough for this particular application. The full scale ranges from 1 to 15,000 psi and is hence perfectly suitable for low pressure.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!