Die Kraft des Wassers: Erneuerbare Energie aus dem Meer

Die Kraft des Wassers: Erneuerbare Energie aus dem Meer

Die Idee, die Kraft des Meeres zur Energiegewinnung zu nutzen, ist nicht neu. Die Herausforderung ist dabei, effiziente Energieumwandlungssysteme zu entwickeln, die die Kosten gering halten und die Umwelt kaum beeinträchtigen. In Italien ist mit REWEC3 in dieser Hinsicht ein vielversprechendes Projekt entstanden.

Der Resonant Wave Energy Converter (REWEC3) ist eine fortgeschrittene Technologie, die aus der Energie der Meereswellen elektrischen Strom produziert. Im Hafen von Civitavecchia wurde die erste Anlage dieses Typs erfolgreich verbaut. Das Funktionsprinzip folgt den Oscillating Water Columns (OWC) Anlagen.

OWCs haben grosses Potential als erneuerbare Energiequelle mit geringer Umweltbelastung. Wenn der Wasserspiegel um und innerhalb eines OWC steigt, wird durch das Wasser Luft in einem Sammelraum verdrängt und vorbei an einem Power-Take-Off (PTO) System hin und her geschoben. Das PTO-System wandelt die Luftströmung in Energie um. Bei den Modellen, die den Luftstrom zu Strom umwandeln, besteht das PTO-System aus einer bidirektionalen Turbine. Das bedeutet, dass sich die Turbine unabhängig von der Richtung des Luftstroms immer in die gleiche Richtung dreht, so dass kontinuierlich Energie erzeugt wird.

Die REWEC3-Anlage in Civitavecchia ging aus einem Forschungsprojekt der Mediterranea University in Reggio Calabria hervor und wird heute von der Firma Wavenergy.it betrieben. Die Anlage ist im Wesentlichen ein verstärkter Senkkasten aus Beton. Der Senkkasten weist auf der den Wellen zugeneigten Seite einen vertikalen Schacht (1) auf, der über eine Öffnung (2) mit dem Meer auf der einen Seite sowie durch eine tiefer gelegene Öffnung (4) mit einem Innenraum (3) auf der anderen Seite verbunden ist. Dieser innere Raum enthält Wasser im unteren Teil (3a) und eine Lufttasche im oberen Bereich (3b). Ein Luftschacht (5) verbindet diese Lufttasche über eine Selbstgleichrichterturbine (6) mit der Umgebungsluft. Die Wellenbewegungen erzeugen Druckveränderungen am Eingang des vertikalen Schachts (2). Das Wasser im Schacht steigt und sinkt dadurch im Inneren des Schachts (1). Dadurch wird die Lufttasche im oberen Bereich des Schachts wechselnd komprimiert oder expandiert. Die Luftströmungen im Luftschacht (5) treiben die Selbstgleichrichterturbine (6) an.

Das Prinzip der REWEC3-Anlagen nutzt also die Wellenbewegungen des Meeres zur Stromerzeugung. Die Luft in der Luftammer wird abwechselnd komprimiert (durch Wellenberge) und dekomprimiert (durch Wellentäler), so dass ein alternierender Luftstrom in einem Kanal erzeugt wird, der eine Selbstgleichrichterturbine antreibt. Durch einen Koaxial-Generator wird schliesslich elektrische Energie erzeugt.

Die Vorteile der REWEC3-Anlage bei der Energiegewinnung sprechen für sich:

  • Sie greift visuell nicht ins Landschaftsbild ein, da sie von aussen kaum zu erkennen ist.
  • Sie dämpft die Wirkung von Wellen und mildert die Auswirkungen von Stürmen an der Küste.
  • Die Meeresfauna wird durch überirdische Lage der Turbinen nicht gefährdet.
  • Eine einen Kilometer lange Anlage kann jährlich 8.000 MWh produzieren.

Bei einer Anlage wie REWEC3 braucht es natürlich eine verlässliche sowie schnelle Überwachung der Druckunterschiede, die durch die auftreffenden Wellen entstehen. Nach ausgiebigen Tests entschieden sich die Forscher der Mediterranea University 2008 für die Präzisions-Pegelsonde ATM.1ST/N von STS. Ausschlaggebend für die Entscheidung zugunsten des ATM.1ST/N Druck Transmitters waren die sehr kurzen Ansprechzeiten von < 1ms / 10 … 90% FS und die sehr gute Langzeitstabilität über einen weiten Temperaturbereich. Auch die Tatsache, dass sich Messinstrumente aus dem Hause STS dank des modularen Aufbaus unkompliziert an verschiedene Anforderungen anpassen lassen, sprach für sich. So konnten die verwendeten ATM.1ST/N Pegelsonden unkompliziert für die Verwendung mit National Instruments Datenloggern konfiguriert werden.

Bildquelle (grafische Darstellung REWEC3): Wavenergy.it

 

Hydrostatic level monitoring of tanks on piezoresistive basis

Hydrostatic level monitoring of tanks on piezoresistive basis

Hydrostatic pressure measurement is one of the most reliable and simplest methods for fill level monitoring in liquid-carrying tanks. In the following, we explain how hydrostatic level monitoring works and what users should consider here.

In hydrostatic level measurement, the filling level of a liquid in a container is to be measured. In this case, the force of weight acting on the pressure transducer installed at the bottom of the container is measured. The weight force in this context is termed the liquid column. It increases in proportion to the filling level and acts as a hydrostatic pressure on the measuring instrument. The specific gravity of the fluid must always be considered in hydrostatic level monitoring. The filling height is thus calculated with the following formula:

h = p/sg

In this formula, h stands for the filling height, p for the hydrostatic pressure at the base of the tank and sg is the specific gravity of the liquid.

The actual quantity of fluid plays no role in hydrostatic level monitoring, since only the filling height is decisive. This means that the hydrostatic pressure is identical in a 200 liter tank narrowing towards its base and in a straight sided tank containing 150 liters of liquid, as long as the liquid and the fill height are identical (3 meters, for example).

The simplest application of hydrostatic pressure measurement is when the liquid concerned is water, since the specific gravity can be disregarded altogether here. When a fluid other than water is involved, the pressure transmitter has to be correspondingly scaled to compensate for the specific gravity of that liquid. Once this has been done, the fill level can be determined, as with water, via the hydrostatic pressure on the bottom of the tank. It becomes more complicated when different liquids are used in a single tank. In this case, not only the hydrostatic pressure at the bottom of the tank must be measured, but at the same time the specific gravity of the respective fluid also. We will leave aside the latter case at this point and instead consider hydrostatic pressure measurement in both closed and open tanks.

Hydrostatic pressure measurement in open and closed tanks

With open tanks, it does not matter whether they are above ground or set within it, as long as they have an opening that provides for a balanced air pressure inside and outside the tank. The measurement of the hydrostatic pressure can be carried out without further adjustments at the bottom of the tank. If measurement at the bottom of the tank is not possible, the filling level can also be found by means of a submersible probe, which is fed into the tank with a cable from above.

In closed tanks, higher gas pressures often prevail than in the atmosphere surrounding the tank. This gas layer above the liquid increases the pressure on the liquid itself. As a result, the liquid can flow off more quickly and there is also less loss due to evaporation. Tanks sealed from the ambient air are therefore frequently used in the oil and chemicals industries. The gas layer pushing down on the liquid also acts indirectly on the pressure transducer at the bottom of the tank and must therefore be taken into account in order to determine the correct filling level (a higher filling level than the actual would be indicated through this increased pressure). In closed containers, two pressures would therefore have to be measured: The gas pressure and the pressure at the bottom of the tank. The hydrostatic pressure of the fluid results from the difference between the measured gas pressure and the pressure measured at the base. This difference can then be converted into an indication of the fill level of the tank. For this type of application, a differential pressure sensor is generally used.

Concluding remarks

In hydrostatic level monitoring of tanks, two factors must always be considered: The type of fluid and the type of tank. The simplest application would be the monitoring of water levels in open tanks, since no adjustments have to be made for this constellation. If, however, a different liquid is involved, then the specific gravity of that liquid must also be taken into account. In addition, a measuring instrument is to be selected that can withstand the properties of the medium concerned. Whereas for most liquids stainless steel is sufficient as a housing material, highly corrosive media may also require different materials.

Leitfähigkeitsmessung in natürlichen Gewässern & anderen Flüssigkeiten

Leitfähigkeitsmessung in natürlichen Gewässern & anderen Flüssigkeiten

Bei der Leitfähigkeitsmessung sind je nach untersuchter Flüssigkeit verschiedene Dinge zu beachten. Besonderes Augenmerk gilt dabei der Temperatur als grösstem Einflussfaktor.

 

Die Leitfähigkeit wird in der Einheit Mikrosiemens angegeben und kennzeichnet die Fähigkeit einer Substanz, elektrischen Strom zu leiten. Der Leitwert ist der Kehrwert des Widerstands, der in der Einheit Ohm angegeben wird. Daraus folgt: Je höher der Leitwert, desto geringer der Widerstand.

Leitfähigkeit in natürlichen Gewässern

Reines Wasser ist praktisch nicht leitfähig (0,055 µS/cm gegenüber Trinkwasser mit 500 µS/cm). Es wird erst durch gelöste Stoffe wie Chloride, Sulfate und andere leitend. Über eine Leitfähigkeitsmessung lässt sich entsprechend die Reinheit eines Gewässers bestimmen: Je höher die Leitfähigkeit, desto mehr Stoffe sind im Wasser gelöst. Typische Anwendungsfälle für die Leitfähigkeitsmessung sind zum Beispiel Deponien, um eine Verschmutzung des Grundwassers zu prüfen. Die Überwachung von Salzwassereintritt in Grundwasserquellen ist eine weitere typische Anwendung. Das macht die Leitfähigkeit zu einer wichtigen Grösse bei Überwachungsaufgaben in der Umwelttechnik, um Rückschlüsse über mögliche Verunreinigungen zu erhalten. Gleichwohl ist die Leitfähigkeit nur ein Indikator für Verschmutzungen, die Zusammensetzung der ins Wasser eingetretenen Stoffe muss dann chemisch analysiert werden. Darüber hinaus sind nicht alle Stoffe, die im Wasser gelöst sein können, ebenfalls leitend (beispielsweise Hormone oder Fungizide).

Eine weitere gängige Anwendung ist die Bestimmung der Fliessrichtung sowie Fliessgeschwindigkeit. Zu diesem Zwecke wird dem Wasser Salz hinzugegeben und dessen Leitfähigkeit entsprechend erhöht. Über punktuelle Messungen des Leitwerts können Fliessgeschwindigkeit und -richtung exakt bestimmt werden.

Wie bereits erwähnt, ist die Leitfähigkeit einer Substanz stark temperaturabhängig. Zwei Proben einer Substanz können bei unterschiedlichen Temperaturen also unterschiedliche Leitwerte ergeben. Ohne eine Temperaturkompensation gibt es praktisch keine Möglichkeit der Vergleichbarkeit zweier Substanzen, wenn sie nicht bei der exakt gleichen Temperatur untersucht werden (können). Aus diesem Grund gehen Leitfähigkeitsmessung und Temperaturerfassung Hand in Hand. Üblicherweise werden daher bei einer Leitfähigkeitsmessung sowohl der Leitwert sowie die Temperatur gemessen. Mittels Temperaturkompensation wird der Leitwert auf eine Referenztemperatur gerechnet. Diese beträgt zumeist 25 °C.

Temperaturkompensationsfunktion: Die Substanz entscheidet

Welche Temperaturkompensationsfunktion zur Ermittlung der Leitfähigkeit bei Referenztemperatur herangezogen wird, hängt ganz von der untersuchten Flüssigkeit ab. Für natürliche Gewässer wird die nichtlineare Funktion nach der Norm DIN EN 27888 Wasserbeschaffenheit herangezogen.

Bei Salzlösungen, Säuren und Laugen kommen lineare Funktionen zur Anwendung. Um die prozentuale Änderung der Leitfähigkeit K pro °C Temperaturänderung T berechnen zu können, verwendet man folgende Formel:

α = (K(T)/T)/K(25°C)*100

K(T) = Leitfähigkeitsänderung aus dem ausgewähltem Temperaturbereich
T = Temperaturänderung aus dem ausgewählten Temperaturbereich
K(25°C)= Leitfähigkeit bei 25°C

Betrachten wir abschliessend eine Beispielrechnung zur Leitfähigkeitsbestimmung von Schnell-Entkalker: Um die notwendigen Angaben für die Berechnung zu erhalten, werden drei Messungen durchgeführt:

122.37 mS/cm bei 20°C
133.10 mS/cm bei 25°C
135.20 mS/cm bei 26°C

K(T) = 135.20 mS/cm -122.37 mS/cm = 12.83 mS/cm
T = 26°C – 20°C = 6°C
K(25°C)= 133.10 mS/cm

α = ((135.20 – 122.37)/(26 – 20))/133.10*100 = 1.60 %/°C

Hydrostatische Druckmessung mit piezoresistiven Pegelsonden

Hydrostatische Druckmessung mit piezoresistiven Pegelsonden

Lebensspender, Lebensgefahr oder einfach nur eine Erfrischung im Sommer: Das Element Wasser bestimmt das tägliche Leben auf der Erde auf vielfältige Weise. Ob seiner Bedeutung ist eine gesicherte Überwachung dieses Elements unerlässlich.

Was man nicht messen kann, kann man auch nicht effizient bewirtschaften. Von der Frischwasserförderung über die Trinkwasseraufbereitung, Trinkwasserspeicherung, die Messung des Wasserverbrauches, der Abwasseraufbereitung bis hin zur Hydrometrie: Ohne korrekte Eingangsgrössen kann nicht wirtschaftlich gearbeitet und geplant werden. Um die heute komplexe hydrometrische Infrastruktur zu erfassen, stehen eine Reihe Geräte und Verfahren zur Auswahl. Der Klassiker der Wasserstandmessung ist dabei sicherlich die Pegellatte, bei der eine Genauigkeit von +/- 1 cm anzulegen ist und die natürlich noch völlig „analog“ funktioniert – also unter Augenschein genommen werden muss und ohne elektronische Datenübertragung auskommt. Eine Remote-Übertragung der gemessenen Daten leisten dafür heute weitaus fortschrittlichere und präzisere Instrumente: Piezoresistive Drucksonden zur Wasserstandmessung in Grund- und Oberflächengewässern.

Pegelmessung mit Drucksensoren

Drucksensoren zur Pegelmessung werden am Grund des zu überwachenden Gewässers angebracht. Im Gegensatz zur Pegellatte kann man sie in aller Regel also nicht in Augenschein nehmen, ohne dabei nass zu werden. Das ist auch nicht nötig. Denn piezoresistive Pegelsonden wurden entwickelt, um den heutigen Anforderungen hinsichtlich Prozessautomatisierung und -kontrolle gerecht zu werden. Dazu gehört selbstredend, dass Pegelstände ohne menschliches Zutun gemessen werden können, was eine kontinuierliche Überwachung an schwer zugänglichen Orten erst ermöglicht.

Hydrostatische Pegelsonden erfassen den hydrostatischen Druck am Grund des Gewässers. Der hydrostatische Druck verhält sich proportional zur Höhe der Flüssigkeitssäule. Er ist des Weiteren abhängig von der Dichte der Flüssigkeit und der Erdanziehungskraft. Nach dem Pascal’schen Gesetz ergibt sich daraus die folgende Berechnungsformel:

p(h) = ρ * g * h + p0

p(h) = hydrostatischer Druck

ρ= Dichte der Flüssigkeit

g = Erdbeschleunigung 

h = Höhe der Flüssigkeitssäule

Wichtige Vorkehrungen zur reibungslosen Füllstandsüberwachung

Dadurch, dass piezoresistive Pegelsonden am Boden des Gewässers platziert werden, sind sie von Oberflächeneinflüssen geschützt. Weder Schaum noch Treibgut können die Messungen beeinflussen. Natürlich müssen sie an den zu erwartenden Bedingungen unter Wasser angepasst sein. Bei Salzwasser ist beispielsweise eine Pegelsonde mit Titangehäuse zu bevorzugen. Ist mit galvanischen Effekten zu rechnen, ist ein Messgerät aus PVDF die beste Wahl. In den meisten Süssgewässern ist ein hochwertiger Edelstahl völlig ausreichend. Darüber hinaus ist eine ausreichende Erdung der Pegelsonden unabdingbar, um beispielsweise Schäden durch Blitzeinschlag vorzubeugen (mehr zu diesem Thema lesen Sie hier).

Moderne Pegelsonden: Alle Daten, ein Gerät

Piezoresistive Pegelsonden können zur Füllstandüberwachung in offenen Gewässern wie Seen, in Grundwasservorkommen sowie in geschlossenen Tanks eingesetzt werden. Handelt es sich um ein offenes Gewässer, wird mit Relativdrucksonden gearbeitet. Bei diesen Geräten wird über eine Kapillare im Drucksondenkabel für den Luftdruckausgleich gesorgt. In Tanks wird üblicherweise ein Differenzdrucksensor verwendet, da die auf die Flüssigkeit drückende Gasdecke miteinbezogen werden muss (mehr zu diesem Thema lesen Sie hier).

Da piezoresistive Pegelsonden ihren Dienst weitestgehend autark verrichten und auch für sehr hohe Drücke optimiert werden können, sind Messungen in sehr grosser Tiefe möglich. Der Tiefe sind theoretisch kaum Grenzen gesetzt, das Drucksondenkabel muss lediglich lang genug sein.

Abbildung 1: Beispiele von Pegelsonden zur hydrostatischen Druckmessung

Abgesehen davon, dass hinsichtlich der Tiefe kaum Grenzen gesetzt sind, sind diese modernen Messgeräte auch äusserst vielseitig. Schliesslich ist nicht nur der Pegelstand eines Gewässers für den Menschen von Interesse. In Bezug auf die Überwachung von Grundwasser ist auch die Wasserqualität von grosser Bedeutung. Die Reinheit eines Grundwassereservoirs lässt sich beispielsweise auch über dessen Leitfähigkeit bestimmen: Je geringer die Leitfähigkeit, desto reiner das Wasser (mehr zum Thema Leitfähigkeit lesen Sie hier). Neben Leitfähigkeitssensoren sind Pegelsonden heute auch mit integrierter Temperaturmessung erhältlich. Somit ermöglichen piezoresistive Pegelsonden eine grosse Bandbreite an Überwachungsaufgaben und sind ohne Frage in den meisten Fällen der Pegellatte vorzuziehen.

Füllstandsüberwachung zur Pumpensteuerung in Regen- und Abwassertanks

Füllstandsüberwachung zur Pumpensteuerung in Regen- und Abwassertanks

Die Wasserversorgung und Abwasserentsorgung unterscheidet sich je nach lokalen Gegebenheiten. In belgischen Gebäuden liegen viele Keller tiefer als die Kanalisation. Die Abwasserentsorgung muss entsprechend über Pumpen geregelt werden.

Das belgische Unternehmen Pumptech stellt Hausbesitzern und -verwaltern leistungsfähige industrielle Pumpen zur Verfügung, über die der Wasserkreislauf in den Gebäuden zum Teil geregelt wird. Das ist in verschiedenen Regionen Belgiens notwendig, weil sich die Keller der dortigen Gebäude oft unterhalb der Kanalisation befinden.

Da das Abwasser also nicht direkt in die Kanalisation fliessen kann, wird es in Tanks zwischengespeichert. In diesen Gebäuden wird oft übrigens auch Regenwasser gesammelt und für Sanitäranlagen genutzt. So wird auf dem Dach auftreffendes Regenwasser in unterirdische Tanks geleitet und steht dort zur weiteren Nutzung bereit. Als Abwasser fliesst es dann schliesslich in die separaten Abwassertanks, von wo es über Pumpen in die Kanalisation gepumpt wird.

Ob Abwasser- oder Regenwassertanks: Die Überwachung des Füllstands ist für einen geregelten Betrieb der Pumpen unerlässlich. Dafür setzt Pumptech seit nunmehr 15 Jahren ATM.ECO/N Tauchsonden ein. Ursprünglich wurde die Füllstandsüberwachung durch Schwimmerschalter geleistet. Wie sich mit der Zeit zeigte, eine unbefriedigende Lösung – vor allem in Bezug auf die Abwassertanks. Der grosse Nachteil von Schwimmerschaltern im Vergleich zu Tauchsonden ist, dass sie durch auf der Wasseroberfläche treibende Verunreinigungen schnell verschmutzen und nicht mehr ordnungsgemäss arbeiten. Und das kann weitreichende Konsequenzen haben: Denn über die Messung des Füllstands werden die Pumpen gesteuert. In der Regel befinden sich zwei bis drei Pumpen in den Tanks. Wird ein vorher festgelegter Füllstand überschritten, geht die erste Pumpe in Betrieb, beim nächsthöheren die zweite. Auch Alarme können ausgelöst werden, sind bestimmte Grenzwerte erreicht.

Im Wasser treibende Verschmutzungen können Tauchsonden, die gewöhnlich am Boden des Tanks installiert werden, wenig anhaben. Nachdem Pumptech verschiedene Anbieter getestet hatte, fiel die Wahl letztlich auf die analoge Pegelsonde ATM.ECO/N von STS, da diese am besten den Anforderungen im Vergleich zu den Mitbewerben hinsichtlich der geforderten Langzeitstabilität entsprechen. Seitdem funktioniert die Steuerung der Pumpen ohne Zwischenfälle.

Für die ATM.ECO/N Tauchsonden spricht die aus hochwertigem, rostfreien Stahl gefertigte und vollständig abgeschlossene Membrane. Ein Feuchtigkeitsfilter am Druckanschlusskabel verhindert ebenfalls, dass Wasser oder andere Verschmutzungen in die Messzelle eindringen können. Ein weiterer Pluspunkt: Durch die im Vergleich zur vorhergehenden Schwimmerschalter-Lösung viel bessere Reaktionszeit sehen Anwender sofort, was in den Tanks vor sich geht.

Das Datenblatt der ATM.ECO/N Pegelsonde finden Sie hier (PDF Download).

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!