Druckspitzen in hydraulischen Anlagen: Ein Risiko für Sensorik und Anlagen

Druckspitzen in hydraulischen Anlagen: Ein Risiko für Sensorik und Anlagen

Druckspitzen kommen in praktisch allen gas- und flüssigkeitsgefüllten Rohrleitungen vor. Die in nur wenigen Millisekunden auftretenden Drücke können den Überlastdruck eingesetzter Druckmessumformer übersteigen und diese zerstören.

Bemerkt werden Druckspitzen, also kurzzeitig auftretende sehr hohe Drücke, in der Regel erst, wenn der Schaden bereits entstanden ist. Sie sind die Folge von Druckstössen und anderen physikalischen Phänomenen (Kavitation, Mikro-Diesel-Effekt), die überall dort auftreten, wo Flüssigkeiten oder Gase durch Rohre transportiert werden. Allerdings sind Druckspitzen bei Gasen aufgrund deren vergleichsweise hohen Kompressibilität weniger von Bedeutung und nur selten eine Gefahr. Im Zusammenhang mit Wasserleitungen werden oft auch die Begriffe Wasserschlag oder Wasserhammer genutzt. Mit diesen Begriffen ist letztlich eine dynamische Druckänderung der Flüssigkeit gemeint. Wenn beispielsweise ein Ventil schnell geschlossen wird, stoppt der Wasserfluss augenblicklich. Das löst eine Druckwelle aus, die das Medium entgegen der Fliessrichtung mit Schallgeschwindigkeit durchläuft und wieder zurückreflektiert wird. Es kommt binnen Millisekunden zu einem starken Druckanstieg, der Schäden an Drucksensoren und Anlagen verursachen kann (Schäden an Rohrarmaturen und Rohrbefestigungen sowie an Pumpen und deren Fundamenten etc.). Zuerst trifft es in der Regel allerdings die Messgeräte, auf die wir uns im Folgenden konzentrieren. Diese Schäden können sich in Form eines winzigen „Durchschusses“ oder Verformungen auf dem Siliziumchip äussern (siehe Abbildungen 1 und 2).

Abbildung 1: „Durchschuss“ als Folge einer Drucksppitze

Abbildung 2: Verformungen infolge von Druckspitzen

Übersteigt der auf den Druckmessumformer einwirkende Druck den Überlastdruck, erleidet dieser bleibende Schäden. Dabei gibt es zwei mögliche Szenarien: So paradox es klingen mag, ist im Falle einer Druckspitze die völlige Zerstörung des Messinstruments dabei die noch glimpflichste Folge. Denn Anwender bemerken in diesem Fall den Schaden sofort. Wird der Sensor infolge einer Druckspitze lediglich verformt, arbeitet er zwar weiter, liefert allerdings nur noch ungenaue Messwerte. Die finanziellen Folgen sind ungleich höher als bei einem gänzlich zerstörten Sensor.

So lassen sich Schäden durch Druckspitzen vermeiden

Der goldene Weg, um Schäden durch Druckspitzen zu verhindern, ist die Integration von Pulsationsdämpfern bzw. Druckdrosseln. Andere Mittel wie der Einsatz von Ventilen würden hier nicht zum Ziel führen, da sie zu langsam sind, um in Millisekunden auf entstehende Druckspitzen zu reagieren.

Der Sinn einer Drossel ist es, Druckspitzen so abzufedern, dass sie nicht mehr den Überlastdruck des Druckmessumformers überschreiten und diesen nicht mehr beschädigen können. Zu diesem Zweck wird die Drossel in den Druckkanal vor die Sensorzelle platziert. Dadurch treffen Druckspitzen nicht mehr direkt und ungebremst auf die Membran, da sie sich erst an der Drossel vorbeischlängeln müssen:

Abbildung 3: Druckkanal mit Druckdrossel

Aufgrund des sehr guten Schutzes vor Druckspitzen ist der Einsatz von Druckdrosseln die beste Variante. Dennoch ist sie nicht ohne Tücken. Denn besonders in Medien mit Fest- und Schwebstoffanteil kann es durch Verkalkungen und Ablagerungen zu einer Blockierung des Druckkanals kommen. In der Folge kommt es zu einer Verlangsamung des Messsignals. Werden Drosseln also in entsprechenden Anwendungen eingesetzt, sollte hier regelmässig gewartet werden.

Ein ergänzender Schutz vor Druckspitzen kann abweichend zum Standard durch eine höher ausgelegte Überdruckfestigkeit geleistet werden. Ob das ratsam ist, hängt von der jeweiligen Anwendung ab: Sind hohe Genauigkeitswerte gefragt, können diese bei sehr hohen Überduckfestigkeiten im Verhältnis zum Messbereich unter Umständen nicht mehr erzielt werden.

Der Dieseleffekt in hydraulischen Anlagen: Materialschäden sind die Folge

Der Dieseleffekt in hydraulischen Anlagen: Materialschäden sind die Folge

Wie es der Name schon verrät, nimmt der Begriff Dieseleffekt auf den Verbrennungsprozess in einem Dieselmotor Bezug. Zu beobachten ist er in hydraulischen Anlagen. Neben Druckspitzen sind Ölalterung, Ablagerungen und die Zerstörung von Dichtungen die Folgen.

Der Dieseleffekt tritt als Folgeerscheinung von Kavitationen auf. Daher wollen wir zunächst die Entstehungsbedingungen von Kavitationen in Hydrauliksystemen betrachten, bevor wir uns dem Dieseleffekt zuwenden.

Kavitation in Hydrauliksystemen

Hydrauliköle enthalten abhängig von Gas, Temperatur, Flüssigkeit und Druck gelöste Luft. Eine Kavitation ist letztlich eine Luftausscheidung aus dem Hydrauliköl. Dazu kommt es, wenn das Öl einem bestimmten Druck oder einer Scherbewegung ausgesetzt ist. Das kommt in der Praxis an Saugleitungen, Pumpeninnenräumen, bei Querschnittverengungen und an Stellen eines Hydrauliksystems vor, wo Pulsationen auftreten. Wenn die in Bewegung befindliche Ölmasse reisst, bilden sich Hohlräume, in die feinste Luftbläschen freigesetzt werden.

Der Dieseleffekt

Wenn die als Folge von Kavitation entstandenen Luftblasen, die auch Ölpartikel enthalten, einem hohen Druck ausgesetzt sind, kommt es zu einer drastischen Temperaturerhöhung in den Bläschen. Diese starke Temperaturerhöhung führt zum Dieseleffekt, also zu Verbrennungen im hydraulischen System. Dieser Verbrennungsprozess läuft binnen Millisekunden ab.

Die Folgen von Kavitation und Dieseleffekt

Kavitation kann eine Vielzahl von negativen Folgen haben, darunter zählen Materialzerstörungen an Pumpgehäusen und Überdruckventilen, das Absaugen von Dichtelementen wie O-Ringen, eine veränderte Durchflusscharakteristik, Wirkminderung bei Pumpen und Getrieben durch Füllungsverluste, Geräusche, Druckstösse mit Druckspitzen, die den Systemdruck überschreiten sowie der Dieseleffekt, der sich in Form von Ölalterungen, Verbrennungsrückständen sowie zerstörten Dichtungen äussert.

Die Folgen von Kavitation und Dieseleffekt sind nicht immer sofort ersichtlich. Oftmals werden sie erst bemerkt, wenn es schon zu spät ist und Reparaturbedarf an den hydraulischen Anlagen besteht. Druckspitzen als Folge von Kavitation und Dieseleffekt können auch zur Überwaschung im System montierte Drucktransmitter beschädigen. Dabei wird durch die plötzliche Druckerhöhung im System die Membran des Druckmessumformers „durchschossen“ (mehr dazu lesen Sie hier).

In Anbetracht der gravierenden Folgen von Kavitation und Dieseleffekt sind entsprechende Massnahmen zur Vermeidung dieser Phänomene zu ergreifen. Dazu gehören eine ausreichende Füllung in den Saugräumen, geringe Strömungsgeschwindigkeiten sowie die Vermeidung scharfer Kanten, Umlenkungen und pulsierender Drücke.

Erprobung von Proportionaldruckreglern in hydraulischen Anlagen

Erprobung von Proportionaldruckreglern in hydraulischen Anlagen

Bei der Erprobung von Proportionaldruckreglern im Rahmen der Entwicklung komplexer hydraulischer Systeme wird eine hohe Impulsfähigkeit und Präzision von der eingesetzten Druckmesssensorik verlangt.

Bei der Entwicklung neuer hydraulischer Systeme wie beispielsweise in der Fahrzeugtechnik müssen eine Vielzahl Komponenten perfekt ineinandergreifen. Neben Erfahrungswerten und Modellen spielen dabei Erprobungsschleifen am Prüfstand eine wichtige Rolle. Entsprechen die von Zulieferern kommenden Komponenten den Spezifikationen? Werden damit bereits optimale Ergebnisse im Gesamtsystem erzielt?

In ölhydraulischen Systemen wie beispielsweise Fahrzeugkupplungen kommt den eingesetzten Druckventilen eine grosse Bedeutung zu. Als mechanisch arbeitende Bauteile müssen sie sorgfältig qualifiziert werden, um negative Effekte wie Überschwingungen oder nachteilige Strömungseffekte gering zu halten. Ein nicht optimal arbeitendes Ventil wirkt sich negativ auf das gesamte System aus. Mit welchen Druckspitzen kann gerechnet werden und wie wirken sie sich auf das System aus? Wie muss das Ventil konstruiert sein, damit möglichst sanfte, schwingungsfreie Kupplungsvorgänge möglich sind? Eine präzise Druckerfassung nimmt bei der Klärung dieser Fragen eine Schlüsselrolle ein. Bis ein harmonisches Gesamtsystem entsteht und diese negativen Effekte weitestgehend ausgeschlossen werden können, sind zahlreiche Tests nötig. Da diese jedoch nicht isoliert am Druckventil sondern im Gesamtsystem durchgeführt werden, sind die Anforderungen an die eingesetzte Sensorik entsprechend hoch.

Druckmessung in hydraulischen Systemen: Spitzenleistung ist gefragt

Als versierter Partner für Druckmessaufgaben im Test & Measurement Bereich konnte STS schon eine Vielzahl Projekte in Zusammenhang mit der Erprobung von Proportionaldruckreglern in hydraulischen Anlagen begleiten. Entsprechend sind wir mit den hohen Anforderungen, die bei Druckmessung an Druckventilen in ölhydraulischen Systemen zu erwarten sind, bestens vertraut.

Aufgrund der immer komplexer werdenden Aufgaben bei der Qualifizierung von hydraulischen Systemen ist Platz inzwischen ein entscheidendes Kriterium. Denn eine Vielzahl Sensorik befindet sich heute an den Systemen. Es gilt daher: Je kleiner, desto besser. Um diesen Anforderungen hinsichtlich Miniaturisierung der Sensorik gerecht zu werden, hat STS letztes Jahr mit dem ATM.mini einen Präszionsdruckmessumformer mit Aussenmassen von nur 17,5 x 49 Millimetern eingeführt, der inzwischen in zahlreichen Prüfständen eingesetzt wird. Ebenfalls ist Flexibilität hinsichtlich der Installation gefragt: Denn nicht nur räumlich muss es passen. Auch hinsichtlich der Prozessanschlüsse gibt es immer wieder andere Vorgaben, die erfüllt werden müssen. Schliesslich können wir aus Erfahrung sagen, dass die Auswahl und Montage der Sensorik bei der Entwicklung einer Anwendung am Prüfstand oftmals am Ende steht und diese sich den geschaffenen Fakten fügen können muss. Aus diesem Grund verfolgt STS ein modulares Bauprinzip, sodass sämtliche Produkte an individuelle Spezifikationen angepasst werden können. Das gilt natürlich auch für den ATM.mini.

Abgesehen von der Grösse sind die „inneren Werte“ ausschlaggebend. Bleiben wir bei der hydraulischen System in der Fahrzeugtechnik: Bei kontinuierlichen Messungen während Tests ist eine sehr gute Impulsfähigkeit ein Muss. Drücke müssen binnen Millisekunden dynamisch erfasst werden können. Darüber hinaus muss dies über einen relativ breites Temperaturband von -30 bis 140°C sehr präzise ablaufen. Die Nichtlinearität darf oftmals bei maximal 0,1 Prozent des Messbereichendwerts liegen (mehr zum Thema Genauigkeit lesen Sie hier). Das schliesst letztlich auch mit ein, dass der Druckmessumformer gegenüber Vibrationen weitestgehend unempfindlich ist. Ein weiterer wichtiger Faktor ist, dass es bei der Erprobung von Komponenten in einem hydraulischen System immer zu Druckspitzen kommen kann, deren Ausmass vorab nicht genau zu bestimmen ist. Für Anwendungen dieser Art ist also ein Druckmessumformer gefragt, dessen Überlastfähigkeit ein Vielfaches des Messbereichs beträgt.

Der ATM.mini aus unserem Hause erfüllt diese Anforderungen. Die Vorteile auf einen Blick:

  • Druckmessbereich von 0…1 bar bis 0…100 bar
  • ausgezeichnete Genauigkeit von 0,1% FS
  • kompaktes Design mit Aussenmassen von 17,5 x 49 Millimeter
  • höchste Präzision über den gesamten Temperaturbereich
  • kompensierter Temperaturbereich von – 40 bis 125°C
  • keine Mediuminkompatibilitäten dank geschweisstem Druckanschluss
  • individuell anpassbare Lösung durch modularen Aufbau
Mud Logging: Drucktransmitter müssen Bestleistung bringen

Mud Logging: Drucktransmitter müssen Bestleistung bringen

Mud Logging bezeichnet Analyseverfahren, die während Bohrprozessen an der Bohrspülung durchgeführt werden. Dafür braucht es auch leistungsstarke und vor allem widerstandsfähige Drucktransmitter.

Der Begriff setzt sich aus dem englischen Wörter für Schlamm („mud“) und Erfassung („logging“) zusammen und bietet damit bereits eine recht gute, wenn auch unvollständige, Umschreibung für den involvierten Prozess: Mud Logging Spezialisten (auch Surface-Logging Specialists) werden von Bohrunternehmen beauftragt, detaillierte Aufzeichnungen über ein Bohrloch zu erstellen. Die Spezialisten analysieren die während des Bohrvorgangs an die Oberfläche gebrachten Informationen, weshalb viele Firmen auch den Begriff Surface Logging Services (SLS) verwenden. Der Bohrschlamm ist dabei die wichtigste Komponente, da er die Information von der Tiefe des Bohrlochs zur Oberfläche trägt, wo die in dem zirkulierenden Bohrmedium enthaltenen Bohrkleinteile („cuttings“) untersucht werden.

Die Analysen bilden ein tiefenabhängiges Protokoll zur Bestimmung der Tiefenposition von Kohlenwasserstoffen, zur Identifizierung der Bohrlochlithologie und zur Überwachung von Erdgas, das während der Bohrung in den Bohrschlamm eindringt. Weitere Ziele des Mud Logging sind die Bestimmung des Porendrucks und der Porosität sowie der Durchlässigkeit der gebohrten Formation, das Sammeln, Überwachen und Bewerten von Kohlenwasserstoffen, die Beurteilung der Herstellbarkeit von kohlenwasserstoffhaltigen Formationen sowie die Protokollierung von Bohrparametern. Diese Daten sind wichtig, um sichere sowie wirtschaftlich optimierte Bohrungen zu gewährleisten.

Das Mud Logging findet in Echtzeit in mobilen Laboren statt, die an der Bohrstelle eingerichtet werden. Die Echtzeitdaten werden direkt zur Bohrsteuerung verwendet. Mud Logging Dienste werden in der Regel von Spezialisten durchgeführt, die von der Bohrfirma beauftragt wurden. STS stellt einigen dieser Anbieter Drucktransmitter zur Verfügung.

Drucksensoren in Bohrprozessen: Wiederstandsfähigkeit ist der Schlüssel

Um den Bohrprozess zu überwachen, montieren Mud Logging Spezialisten verschiedene Sensoren an der Bohrvorrichtung. Die Erkennung von geringfügigen Verlusten des Bohrrohrdrucks erfordert eine sehr hohe Genauigkeit. Die Rückmeldung muss ohne Zeitverzögerung erfolgen, um mit Unregelmässigkeiten verbundene Risiken und Kosten zu vermeiden.

Bohrstellen sind harsche Umgebungen und können die eingesetzte Sensorik daher stark beanspruchen. Die zwei wichtigsten Faktoren in dieser Hinsicht sind der Bohrschlamm selbst und die Vibrationen, die bei Bohrvorgängen zu erwarten sind.

Abbildung 1: ATEX zertifizierter Drucktransmitter für Mud-Logging Anwendungen 

Um diesen harten Bedingungen gerecht zu werden, stellt STS Unternehmen, die Oberflächen-Logging-Services anbieten, den Drucktransmitter ATM/ ECO/EX mit speziell angefertigtem Gehäuse zur Verfügung. Der ATEX-zertifizierte Drucktransmitter ist für hohe Druckbereiche optimiert. Die bei Bohrvorgängen auftretenden Schwingungen beeinflussen in erster Linie die Verbindungsstelle zum Prozessanschluss. STS löste das Problem durch Doppelschweißen der Verbindung. Darüber hinaus ist das Edelstahlgehäuse dicker als in normaler Ausführung (26,5 mm). Abgesehen von den hohen Druckbereichen und den starken Vibrationen stellt der Bohrschlamm eine weitere Herausforderung dar, indem der Druckkanal möglicherweise verstopft wird. Um Verstopfungen zu vermeiden, haben wir den Kanal etwas breiter gemacht (10 mm). Normalerweise kann ein breiterer Druckkanal die Druckmembran gefährden. Da bei Anwendungen dieser Art jedoch weitgehend statische Drücken auftreten, ist dies kein Problem.

Mud Pulse Telemetry: MWD-Daten mittels Drucktransmitter übertragen

Mud Pulse Telemetry: MWD-Daten mittels Drucktransmitter übertragen

Bei der hydraulischen Datenübertragung braucht es empfindliche Drucksensoren, die gleichzeitig sehr hohen Drücken standhalten. Dies trifft besonders auf den Einsatz in Measurement While Drilling (MWD)-Anwendungen zu.

Im Rahmen von Measurement While Drilling (MWD)-Anwendungen werden Daten während Bohrungen erhoben. Besonders bei Offshore-Richtbohrungen ist MWD eine Standard-Anwendung geworden. Die Echtzeit-Datenerhebung ist essenziell, damit der Bediener des Bohrers diesen in die anvisierte Zone steuern kann. Zu diesem Zweck werden verschiedene Sensoren am Bohrkopf montiert, die Aufschluss über die Bohrumgebung in Echtzeit geben sollen. Dabei kommen Neigungs-, Temperatur-, Ultraschall- und auch Strahlungssensoren zum Einsatz. Diese verschiedenen Sensoren sind physisch oder digital miteinander verbunden und an einer Logikeinheit angeschlossen, die die Informationen in binäre Ziffern umwandelt. Diese Daten aus dem Bohrloch werden über Mud Pulse Telemetry („Schlammimpulstelemetrie“) an die Oberfläche übermittelt. Abgesehen von der Überwachung und Steuerung des Bohrvorgangs werden sie für weitere Aspekte genutzt, darunter:

  • Informationen zum Zustand der Bohrkrone
  • Protokollierung der geologischen Beschaffenheit der penetrierten Erdschichten
  • Erstellung von Leistungsstatistiken zur Identifizierung möglicher Verbesserungen
  • Risikoanalyse für zukünftige Bohrungen

Bei Mud Pulse Telemetry handelt es sich um ein binäres Kodierungsübertragungssystem, das mit Flüssigkeiten verwendet wird. Dies wird durch ein Ventil erreicht, dass den Druck des Bohrschlamms innerhalb des Bohrstrangs variiert und somit die Aufzeichnungen der am Bohrkopf montierten Sensorik in Druckimpulse umwandelt. Über den Bohrschlamm gelangen diese Pulsationen an die Oberfläche. Die Druckimpulse werden an der Oberfläche von einem Drucktransmitter gemessen und in ein elektrisches Signal umgewandelt. Dieses Signal wird an ein Lesegerät übermittelt und digitalisiert. Mittels Computern können die übermittelten Informationen rekonstruiert werden.

STS stellt Anwendern in der Offshore-Richtbohrung analoge Drucktransmitter zur Verfügung, die bei der Mud Pulse Telemetry eingesetzt werden. Die Anforderungen an die eingesetzte Sensorik sind hoch: Sie müssen extrem empfindlich sein, um bereits kleinste Druckunterschiede sicher zu registrieren. Zur gleichen Zeit müssen die Sensoren Drücken von bis zu 1.000 bar standhalten. Denn es sind bei sehr tiefen Bohrungen sehr hohe Drücke nötig, um den Bohrkopf anzutreiben. Auch die zur Mud Pulse Telemetry an der Oberfläche verwendeten Drucktransmitter sind diesen Kräften ausgesetzt.

Abbildung 1: Analoger Drucktransmitter für den Mud Pulse Telemetry Einsatz

Abgesehen von der hohen Empfindlichkeit sind auch sehr schnelle Reaktionszeiten gefragt, um eine gute Datenkommunikation in Echtzeit zu gewährleisten. Darüber hinaus sollte das Messinstrument möglichst rauscharm sein, um verfälschte Messergebnisse weitestgehend auszuschliessen. Besonders die Schlammpumpen verursachen in Bohranwendungen das meiste Signalrauschen. Auch der Antrieb des Bohrers ist eine Störquelle. Aus diesem Grund sind analoge Sensoren mit einem 4 mA … 20 mA Ausgangssignal die beste Lösung für die Mud Pulse Telemetry.