Energieträger Methanhydrat – Druckmesstechnik für die Tiefsee

Energieträger Methanhydrat – Druckmesstechnik für die Tiefsee

Gewaltige Mengen an Erdgas sind als festes eisähnliches Methanhydrat im Meeresboden gespeichert. Diese natürlichen Vorkommen enthalten mehr Energie und Kohlenstoff (ca. 3000Gt C), als alle konventionellen Lagerstätten wie Kohle, Öl und Gas auf unserem Planeten. Erdgas ist die umweltfreundlichste Quelle für fossile Energien. Unter Leitung des Kieler Leibniz Instituts für Meereswissenschaften (IFM-GEOMAR) wurden im Rahmen des Projektes SUGAR (Submarine Gashydrat Reservoirs) mit einem Mitteleinsatz von ca. 13 Millionen Euro neue Technologien entwickelt, um Erdgas (Methan) aus Methanhydraten im Meeresboden zu gewinnen und Kohlendioxid (CO2) aus Kraftwerken und anderen industriellen Anlagen sicher im Meeresboden zu speichern. Im Teilprojekt “Vermessung von Hydratvorkommen als CO2 Deponie mittels tief geschleppter hydroakustischer Streamer” werden mit Hilfe einer Streamerkette mit 96 Messknoten in einer Wassertiefe bis zu 4000 m seismische Messungen durchgeführt, um die Hydratvorkommen zu finden, abzubilden und für eine hochgenaue Strukturanalyse zu quantifizieren.

Abbildung 1: Methan Hydrat in 1055m Tiefe
Quelle: NOAA Okeanos Explorer Program/2013 Northeast U.S. Canyons Expedition

Für die Analyse ist eine präzise Tiefenlokalisierung aller einzelnen Messknoten erforderlich, da nicht davon ausgegangen werden kann, dass alle Knoten in einem Tiefenhorizont geschleppt werden.

Abbildung 2: Gashydrat-Funde im Ozean und auf dem Land
Quelle: Jens Greinert, Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR)

Die Realisierung der Messkette wurde vom IFM-Geomar an drei Firmen vergeben, die die folgenden Aufgaben übernommen haben:

  • Entwicklung und Fertigung der mechanischen und elektromechanischen Komponenten durch die KUM Umwelt- und Meerestechnik Kiel GmbH
  • Entwicklung und Realisierung der elektronischen Komponenten für die einzelnen Knoten (Systemplatine Signalverarbeitung der hydroakustischen Signale, Telemetrie, Vernetzung der Knoten, Energieversorgung, Softwareentwicklung für die Steuerung der Datenerfassung vom Bordgerät) durch die SEND Off-Shore Electronics GmbH
  • Entwicklung und Fertigung der Messtechnik zur Tiefenbestimmung der Knoten über Druckmessung durch die SiS Sensoren Instrumente Systeme GmbH in Zusammenarbeit mit STS

Abbildung 3: Schleppanordnung eines tief geschleppten, kombinierten Mehrkanalseismik-Seitenschichtsonarsystem
Quelle: Breitzke, Bialas IFM Geomar

Geforderte Spezifikationen

  • Korrosionsfestigkeit in Seewasser
  • Genauigkeit (TEB) besser als 0,1 bar
  • Auflösung besser als 0,01 bar
  • Messbereich 0 bis 400 bar entsprechend 4000 m Wassertiefe
  • Temperaturbereich -2 bis 40°C
  • Isolationsfestigkeit gegen Seewasser von mehr als 600 V
  • Messfrequenz 1,25Hz
  • Energieversorgung: 5V < 2,5mA, 3,3V < 3,0mA
  • Interface I2C, Standard Modbus (max. 100kbit/s)

Als Material für den Sensor kam nur Titan in Frage. Piezoresistive Druckmesszellen komplett aus Titan wurden in der Vergangenheit von STS bezogen. Die Erfahrungen mit diesem Sensorelement liessen erwarten, dass die geforderte Genauigkeit mit dem von SiS entwickelten Linearisierungsverfahren über Druck und Temperatur einzuhalten wären.

Insbesondere wird der Druck relativ zum Luftdruck an der Oberfläche benötigt. Dies ermöglicht einen automatischen Nullpunktabgleich aller 96 Knoten an der Oberfläche vor dem Einsatz in See. Dadurch wird der Nullpunktdrift der Sensoren kompensiert, so dass nur Drifterscheinungen höherer Ordnung in das Langzeitverhalten eingehen.

Realisierung

Das Sensorelement wird in einer Aufnahme im Verschlussstopfen untergebracht und mittels einer Druckschraube fixiert. Der Seewasserzugang wird durch eine frontale Bohrung hergestellt. Eine radiale Bohrung am Verschlussstopfen führt auch durch das Gehäuserohr nach aussen. Diese Konstruktion wurde gewählt, damit der Druckkanal nach dem Seeeinsatz von Seewasser gereinigt werden kann, etwa durch Spülen mit Frischwasser oder Druckluft. Dadurch wir die Salzkristallbildung im Dichtungsbereich des Drucksensors vermieden.

Über eine Steckverbindung wird der Sensor mit der Druckplatine verbunden. Diese enthält die analoge Vorverarbeitung, den 16 bit AD Wandler sowie den Digitalteil mit Microcontroller, dem EEPROM und der I2C-Schnittstelle.

Abbildung 4: Baugruppen des Systems

Die Druckplatine sitzt über einem Inline Pfostenstecker huckepack auf der Systemplatine. Dieser Aufbau wurde gewählt, um die Einheit Drucksensor-Druckplatine unabhängig von der Systemplatine kalibrieren zu können. Das ist insbesondere bei der alle zwei Jahre erforderlichen Rekalibrierung vorteilhaft.

Kalibrierung

Zur Druckkalibrierung wurde eine Fassung des Drucksensors konstruiert, die von dem vorhandenen Kalibrieradapter aufgenommen werden kann. In dem karussellartigen Kalibrieradapter können zwölf Sensoren parallel kalibriert werden. Der Kalibrieradapter wird in ein thermostatisiertes Bad eingetaucht, so dass die Sensorelemente eng an die Badtemperatur angekoppelt sind. Der Kalibrieradapter wird mittels Hochdruckleitung an die Budenberg Druckwaage angeschlossen.

Abbildung 5: Kalibrieradapter

Die I2C Ausgänge der Sensoren werden an ein Kalibrierinterface angeschlossen, welches mit einem Rechner im Intranet verbunden ist. Dadurch ist gewährleistet, dass die Kalibrierdaten an allen Arbeitsplätzen  der Firma zur Verfügung stehen – für die Archivierung, die Berechnung der Kalibrierkoeffizienten, den Download der Koeffizienten in die EEPROMs der Sensoren, den Ausdruck von Kalibrierscheinen, etc.. Der Kalibriervorgang ist menügeführt und wird durch eine Profildatei gesteuert, welche die Kalibrierstützstellen enthält. Für den SUGAR-Drucksensor wurden folgende Stützstellen gewählt:

  • 0, 800, 1600, 2400, 3200, 4000 dbar bei jeweils den Temperaturen -2, 7, 16, 24, 32, und 40°C

Diskussion der Ergebnisse

Zur Ermittlung der Kalibrierkoeffizienten werden 36 Datenpunkte verwendet (sechs Drücke bei jeweils sechs Temperaturen). Für die Temperaturkompensation wird vom Datenerfassungsystem des Sensors der Brückenwiderstand des Sensorelements verwendet. Wegen der spiegelasymetrischen Verstimmung der Dehnungsmessbrücke des Sensorelementes ist der Diagonalwert in erster Ordnung nur vom Druck und der Brückenwiderstand in erster Ordnung nur von der Temperatur abhängig. Daher eignet sich der Brückwiderstand sehr gut zur Temperaturkorrektur. Der Brückwiderstand wird benutzt, um die Fehler höherer Ordnung der Druckmessung zu kompensieren. Der Vorteil der Methode besteht darin, dass das Temperatursignal direkt am Ort der Störung ermittelt wird, nämlich direkt am Element der Druckmessung. Daher sind keine Zeitkonstanten zu berücksichtigen, wie etwa bei der Messung der Temperatur ausserhalb des Sensorelementes durch ein separates Thermometer. Es treten also keine dynamischen Fehler der Korrektur auf.

Weitere Informationen zum Projekt.

Quellen:
IFM-GEOMAR Helmholtz Zentrum für Ozeanforschung
KUM Umwelt- und Meerestechnik
SEND Off-Shore Electronics GmbH
SiS Sensoren Instrumente Systeme GmbH

Druckmessung an Spritzgiessmaschinen

Druckmessung an Spritzgiessmaschinen

Spritzgiessmaschinen arbeiten mit höchster Präzision. Das Schweizer Unternehmen Netstal-Maschinen AG bietet leistungsstarke und hochpräzise Spritzgiessmaschinen und Systemlösungen für die Getränke-, Verspackungs- und Medizintechnikindustrien an. In den hochwertigen Anlagen sind Drucksensoren aus dem Hause STS verbaut.

 

Mit einer Kunstoffspritzgiessmaschine werden aus Kunstoffen in Granulatform fertige Kunststoffteile produziert. Eine solche Anlage besteht aus grob vereinfacht zwei Komponenten, der Spritzeinheit und der Schliesseinheit. In der Spritzeinheit wird der Rohstoff aufbereitet. Dabei wird dieser in der Regel in einer Schneckenwelle, die sich in einem Hydraulikzylinder befindet, erhitzt und homogenisiert. In der Schliesseinheit befindet sich ein Werkzeug, dass die Negativform des zu fertigenden Kunststoffteils darstellt. Die in der Schnecke aufbereitete Formmasse wird unter Druck in diese Negativform eingespritzt.

Eine Überwachung der nötigen Druckverhältnisse ist für eine Gewährleistung des fehlerfreien Spritzgiessverfahrens unerlässlich. Dafür werden die Sensoren in den Hydraulikkreis der Einspritzachsen montiert. Der spezifische Massedruck kann auf Basis des gemessenen Kammerdrücke während des Einspritzvorgangs berechnet werden. Dabei ist es besonders wichtig, dass die Messabweichung der Sensoren sehr klein ist, da ansonsten der Kunststoffdruck zu niedrig oder zu hoch berechnet wird.

Ist der Massedruck zu hoch oder zu niedrig,

  • beeinflusst dies die eingespritzte Füllmenge,
  • kann das fertige Kunststoffteil fehlerhaft sein,
  • kann es zu Materialverlust oder Werkzeugschäden kommen,
  • kann es zum Stillstand der Anlage kommen.

Hochpräzise Anlagen wie die Spritzgiessanlagen der Firma Netstal-Maschinen AG verlangen nach Drucktransmitter, die über den geforderten Messbereich absolut zuverlässige Ergebnisse liefern. Um die beste Lösung für die hohen Ansprüche zu finden, wurden ausgiebige Tests mit Instrumenten verschiedener Hersteller durchgeführt. Es sollte dabei nicht nur die Genauigkeit der Messinstrumente, sondern auch deren Langzeitstabilität unter hohen Temperaturen geprüft werden. Am Prüfstand wurden die folgenden Messintervalle durchgeführt:

Abbildung 1: Standardisiertes Prüfverfahren zur Evaluation eines geeigneten Drucktransmitter. Nach vier, sechs und acht Millionen Druckzyklen wurden die Drucksensoren jeweils einer Temperaturbelastung (Aging – künstliche Alterung) ausgesetzt.

Der Hochpräzisions-Drucksensor ATM.1ST von STS erreichte bei diesen Herz-und-Nieren-Tests die Bestnote in den Aspekten Toleranz, Langzeitstabilität, Präzision und Genauigkeit über den gesamten Druck- und Temperaturbereich. Besonders ausschlaggebend war dabei vor allem, dass der Drucksensor den hohen Temperaturen auch über lange Zeit die kalte Schulter zeigt und sich im Niedrigdruckbereich durch eine sehr hohe Genauigkeit auszeichnet.

Abbildung 2: Auswertung eines STS Drucktransmitter über Zeit und Temperatur. OZ (Original Zustand – in Rot, strich punktiert) wurde als Ausgangslage verwendet, die ausgezogenen Linien nach jeweils einem festen Intervall, die gestrichelten Linien unter Einbezug des Alterungsprozesses gemäss dem Prüfverfahren aus Abbildung 1.  Der Wert Toleranzfeld Aufnehmer bezieht sich auf die Herstellerspezifikation (Datenblatt), die festausgezogenen Linien Toleranzfeld NM waren die Zielvorgaben der Evaluierung.  

Ein weiterer Vorteil des ATM.1ST ist, dass er sich aufgrund des modularen Aufbaus ohne Aufwand an individuelle Anwendungen anpassen lässt. Die Daten im Überblick:

  • Druckmessbereich: 100 mbar … 1000 bar
  • Relativ- und Absolutmessbereiche
  • Kennlinie: ≤ ± 0.10 / 0.05 % FS
  • Betriebstemperatur: -40 … 125°C
  • Gesamtfehler: ≤ ± 0.30 %FS (0 … 70°C)
  • Materialien: Edelstahl, Titan
Verlässliche Füllstandsüberwachung im Kohlebergbau

Verlässliche Füllstandsüberwachung im Kohlebergbau

Bergwerke und Tagebaue sind für ihre rauen Arbeitsbedingungen bekannt. Das trifft auch auf die eingesetzte Technik zu. Darum braucht es widerstandsfähige und zuverlässige Messinstrumente zur Überwachung des Grundwassers.

In Australien liegen zehn Prozent des weltweiten Kohlevorkommens. Als führender Kohle-Exporteur ist der Kohlebergbau einer der wichtigsten Wirtschaftsfaktoren des Kontinents. Die Förderung des Rohstoffs ist jedoch nicht ohne Tücken. Die Betreiber eines australischen Kohletagebaus kamen auf STS zu, da sie nach einem Drucktransmitter zur Füllstandsüberwachung in bis zu 400 Meter Tiefe suchten.

Minenarbeiten haben einen starken Einfluss auf das Grundwasser. Die den Kohlebergbau umgebenden Grundwasserleiter werden entwässert, was zum Absinken des Absenkungstrichters führt. Dieses Absinken verändert die natürlichen unterirdischen hydrologischen Bedingungen, indem Wege geringeren Widerstands geschaffen werden. Das führt dazu, dass Wasser in die offene Grube und die unterirdischen Arbeiten eindringt. Daher muss das stetig nachfliessende Wasser kontinuierlich aus dem Tagebau gepumpt werden, um eine reibungslose und sichere Förderung des Rohstoffs zu gewährleisten.

Um den Grundwasserstand und die zur Entwässerung eingesetzten Pumpen zu überwachen, brauchten die Betreiber des Koheltagebaus einen Drucktransmitter zur Überwachung des Füllstands, der ihren Anforderungen entspricht. Gefordert waren ein Druckmessbereich von 0 bis 40 bar (400 mH2O) Umgebungsdruck sowie eine Kabellänge von 400 Metern. Die bis dahin von STS angebotene Lösung, der ATM.ECO/N/EX, kam allerdings nur auf 25 bar und eine Kabellänge von 250 Metern.

Da STS aber auf kundenspezifische Druckmesslösungen spezialisiert ist, stellte diese Herausforderung keine grosse Hürde dar. Kurzerhand wurde der eigensichere Drucktransmitter für Füllstand ATM.1ST/N/Ex entwickelt, der den Druckanforderung genau entspricht und mit einem 400 Meter langen Teflonkabel ausgestattet ist. Auch die Präzision weiss mit 0,1 Prozent zu überzeugen. STS entschied sich bei der Entwicklung des neuen Drucktransmitters für ein Teflonkabel, eine versiegelte Kabelverschraubung und ein offenes Entlüftungsrohr (PUR ist dafür zu weich). Darüber hinaus gibt es ein verschraubbares Ballastgewicht, um eine gerade und stabile Messposition sicherzustellen. Die ebenfalls aufschraubbare Zugentlastung aus Edelstahl hilft dabei, die Spannung auf dem elektrischen Kabel zu entlasten. Wie es die Gerätebezeichnung bereits verrät, verfügt es über die EX-Zertifizierung für den Einsatz in explosionsgefährteten Bereichen.

ATM.1ST/N/Ex mit  Zugentlastung (links) und Ballastgewicht (rechts), jeweils verschraubbar.

Als Experte für kundenspezifische Drucktransmitter konnte STS den ATM.1ST/N/Ex in weniger als drei Wochen liefern.

Die Eigenschaften des ATM.1ST/N/Ex im Überblick:

  • Druckmessbereich: 1…250 mH2O
  • Kennlinie: ≤ ± 0.1 % FS
  • Gesamtfehler: ≤ ± 0.30 %FS (-5…50 °C)
  • Betriebstemperatur: -5…80 °C
  • Mediumtemperatur: -5…80 °C
  • Ausgangssignal: 4…20 mA
  • Materialien: Edelstahl, Titan
  • Elektronische Kompensation
  • Beliebige Prozessanschlüsse erhältlich
Druckmessung in abrasiven Medien mit Vulkollan®-Membran

Druckmessung in abrasiven Medien mit Vulkollan®-Membran

Gewöhnlich sind Drucksensoren als Edelstahl oder Titan-Ausführungen erhältlich. Damit sind alle gängigen Prüfstandsanwendungen oder Überwachungsaufgaben abgedeckt. Kommt es aber zu Kontakt mit besonders abrasiven Medien, braucht es zusätzlichen Schutz. Eine zusätzliche Vulkollan®-Membran kann den Ansprüchen oft schon genügen.

Bevor wir uns zwei konkreten Anwendungsbeispielen zuwenden, einige einleitende Worte zum Stoff an sich: Vulkollan® ist die Handelsbezeichnung für Polyester-Urethan-Kautschuk, einem Polyurethan-Kunststoff mit elastischen Eigenschaften sowie guter chemischer und mechanischer Beständigkeit. Der gummielastische Werkstoff wird in verschiedenen Varianten als Schaum, zelliger Weichkunststoff sowie als Massivkunststoff verwendet. Während die ersten beiden Varianten vorwiegend in der Molchtechnik eingesetzt werden, wird der Massivkunststoff zu Rädern, Rollen und Ummantelungen verarbeitet. Hier liegt der Temperatureinsatzbereich bei -20 bis +80 Grad Celsius.

Kontaktmedium Beton

Ein Marktführer im Bereich Spezialtiefbau kontaktierte STS auf der Suche nach einem Drucksensor, der sich bedenkenlos in einem fliessenden, abrasiven Medium einsetzen lässt. In diesem Fall ging es konkret um Beton. Der Tiefbauspezialist stellt hydraulisches Equipment her, das Löcher in die Erde bohrt und diese mit Beton auffüllt, um Pfähle zu erhalten.

Damit diese Betonpfähle eine stabile Struktur aufweisen, muss ein kontinuierlicher Betonfluss sichergestellt werden. Der Beton wird über ein Rohr in das Loch gefüllt. Nachdem das Rohr in das Loch eingeführt wurde, kann es passieren, dass der Beton das Innere des Rohrs verstopft – es kommt zu einer Unterbrechung des Vorgangs.

Um dies zu verhindern, sollte ein Drucksensor in das Innere des Rohres eingesetzt werden. Da der Beton mithilfe einer Pumpe durch das Rohr in das gebohrte Loch befördert wird, lässt sich eine Verstopfung durch einen hohen Druck im Inneren des Rohres leicht erkennen. Für diese Aufgabe kam ein Edelstahl-Drucksensor nicht in Frage, da er dem Beton nur über kurze Zeit standgehalten hätte.

Um diese Herausforderung zu meistern, schlug STS vor, einen Flanschsensor mit einer zusätzlichen Vulkollan® -Membran auszurüsten. Durch diesen Schutz erreicht der verwendete Sensor eine Lebensdauer von einem Jahr bei 5 Prozent Gesamtfehler. Die mechanische Konstruktion sowie die elektrischen Anschlüsse waren eine Sonderanfertigung, die in kurzer Zeit bereitgestellt werden konnte.

Füllstandsmessung in Trimmtanks

Ein Hersteller für Schiffskontrollsysteme trat auf der Suche nach einer zuverlässigen Lösung zur Wasserstandsmessung in Trimmtanks an STS heran.

Trimmtanks werden benutzt, um die Position des Masseschwerpunkts eines Wasserfahrzeuges zu beeinflussen. Frachtschiffe werden zum Beispiel so konstruiert, dass bei voller Beladung die Konstruktionswasserlinie mit der tatsächlichen Wasserlinie zusammenfällt. Wenn sie aber ohne Ladung in See stechen, taucht der Rumpf soweit aus dem Wasser auf, dass der Bug zu grossen Teilen aus dem Wasser ragt. Aufgrund des Maschinengewichts liegt der Rumpf zwar tiefer, unter Umständen aber nicht tief genug, damit die Propeller noch ausreichend ins Wasser eintauchen – das Schiff ist in diesem Fall also manövrierunfähig. Um dem entgegenzuwirken, werden die Trimmtanks mit Wasser gefüllt.

Die Sensoren zur Überwachung des Füllstands kommen aber nicht nur mit Salzwasser in Kontakt (dafür würden Titangehäuse ausreichen), sondern auch mit Sand, kleinen Steinen oder Muscheln. Um hier die Lebensdauer des Sensors zu optimieren, wurde dessen Membran mit einem Vulkollan®-Film überzogen.

Bild 1: Beispiel eines Drucktransmitter mit Vulkollan® Folie

Dank Vulkollan® können Drucksensoren zur Verwendung in abrasiven Medien optimiert werden. Dies gilt jedoch nicht für explosionsgefährdete Stoffe oder Säuren.

Mehr zum Thema Medienkompatibilität piezoresistiver Druckaufnehmer lesen Sie hier.

Darüber hinaus müssen Anwender bedenken, dass der zusätzliche Vulkollan®-Schutz die Präzision des Sensors negativ beeinflusst. Auch wird das Temperaturverhalten instabiler.

Daher geht nichts über eine umfassende und kompetente Beratung durch Experten bei der Suche nach einer geeigneten Druckmesslösung für abrasive Medien.

Druckspitzen in hydraulischen Anlagen: Ein Risiko für Sensorik und Anlagen

Druckspitzen in hydraulischen Anlagen: Ein Risiko für Sensorik und Anlagen

Druckspitzen kommen in praktisch allen gas- und flüssigkeitsgefüllten Rohrleitungen vor. Die in nur wenigen Millisekunden auftretenden Drücke können den Überlastdruck eingesetzter Druckmessumformer übersteigen und diese zerstören.

Bemerkt werden Druckspitzen, also kurzzeitig auftretende sehr hohe Drücke, in der Regel erst, wenn der Schaden bereits entstanden ist. Sie sind die Folge von Druckstössen und anderen physikalischen Phänomenen (Kavitation, Mikro-Diesel-Effekt), die überall dort auftreten, wo Flüssigkeiten oder Gase durch Rohre transportiert werden. Allerdings sind Druckspitzen bei Gasen aufgrund deren vergleichsweise hohen Kompressibilität weniger von Bedeutung und nur selten eine Gefahr. Im Zusammenhang mit Wasserleitungen werden oft auch die Begriffe Wasserschlag oder Wasserhammer genutzt. Mit diesen Begriffen ist letztlich eine dynamische Druckänderung der Flüssigkeit gemeint. Wenn beispielsweise ein Ventil schnell geschlossen wird, stoppt der Wasserfluss augenblicklich. Das löst eine Druckwelle aus, die das Medium entgegen der Fliessrichtung mit Schallgeschwindigkeit durchläuft und wieder zurückreflektiert wird. Es kommt binnen Millisekunden zu einem starken Druckanstieg, der Schäden an Drucksensoren und Anlagen verursachen kann (Schäden an Rohrarmaturen und Rohrbefestigungen sowie an Pumpen und deren Fundamenten etc.). Zuerst trifft es in der Regel allerdings die Messgeräte, auf die wir uns im Folgenden konzentrieren. Diese Schäden können sich in Form eines winzigen “Durchschusses” oder Verformungen auf dem Siliziumchip äussern (siehe Abbildungen 1 und 2).

Abbildung 1: “Durchschuss” als Folge einer Drucksppitze

Abbildung 2: Verformungen infolge von Druckspitzen

Übersteigt der auf den Druckmessumformer einwirkende Druck den Überlastdruck, erleidet dieser bleibende Schäden. Dabei gibt es zwei mögliche Szenarien: So paradox es klingen mag, ist im Falle einer Druckspitze die völlige Zerstörung des Messinstruments dabei die noch glimpflichste Folge. Denn Anwender bemerken in diesem Fall den Schaden sofort. Wird der Sensor infolge einer Druckspitze lediglich verformt, arbeitet er zwar weiter, liefert allerdings nur noch ungenaue Messwerte. Die finanziellen Folgen sind ungleich höher als bei einem gänzlich zerstörten Sensor.

So lassen sich Schäden durch Druckspitzen vermeiden

Der goldene Weg, um Schäden durch Druckspitzen zu verhindern, ist die Integration von Pulsationsdämpfern bzw. Druckdrosseln. Andere Mittel wie der Einsatz von Ventilen würden hier nicht zum Ziel führen, da sie zu langsam sind, um in Millisekunden auf entstehende Druckspitzen zu reagieren.

Der Sinn einer Drossel ist es, Druckspitzen so abzufedern, dass sie nicht mehr den Überlastdruck des Druckmessumformers überschreiten und diesen nicht mehr beschädigen können. Zu diesem Zweck wird die Drossel in den Druckkanal vor die Sensorzelle platziert. Dadurch treffen Druckspitzen nicht mehr direkt und ungebremst auf die Membran, da sie sich erst an der Drossel vorbeischlängeln müssen:

Abbildung 3: Druckkanal mit Druckdrossel

Aufgrund des sehr guten Schutzes vor Druckspitzen ist der Einsatz von Druckdrosseln die beste Variante. Dennoch ist sie nicht ohne Tücken. Denn besonders in Medien mit Fest- und Schwebstoffanteil kann es durch Verkalkungen und Ablagerungen zu einer Blockierung des Druckkanals kommen. In der Folge kommt es zu einer Verlangsamung des Messsignals. Werden Drosseln also in entsprechenden Anwendungen eingesetzt, sollte hier regelmässig gewartet werden.

Ein ergänzender Schutz vor Druckspitzen kann abweichend zum Standard durch eine höher ausgelegte Überdruckfestigkeit geleistet werden. Ob das ratsam ist, hängt von der jeweiligen Anwendung ab: Sind hohe Genauigkeitswerte gefragt, können diese bei sehr hohen Überduckfestigkeiten im Verhältnis zum Messbereich unter Umständen nicht mehr erzielt werden.