Der Dieseleffekt in hydraulischen Anlagen: Materialschäden sind die Folge

Der Dieseleffekt in hydraulischen Anlagen: Materialschäden sind die Folge

Wie es der Name schon verrät, nimmt der Begriff Dieseleffekt auf den Verbrennungsprozess in einem Dieselmotor Bezug. Zu beobachten ist er in hydraulischen Anlagen. Neben Druckspitzen sind Ölalterung, Ablagerungen und die Zerstörung von Dichtungen die Folgen.

Der Dieseleffekt tritt als Folgeerscheinung von Kavitationen auf. Daher wollen wir zunächst die Entstehungsbedingungen von Kavitationen in Hydrauliksystemen betrachten, bevor wir uns dem Dieseleffekt zuwenden.

Kavitation in Hydrauliksystemen

Hydrauliköle enthalten abhängig von Gas, Temperatur, Flüssigkeit und Druck gelöste Luft. Eine Kavitation ist letztlich eine Luftausscheidung aus dem Hydrauliköl. Dazu kommt es, wenn das Öl einem bestimmten Druck oder einer Scherbewegung ausgesetzt ist. Das kommt in der Praxis an Saugleitungen, Pumpeninnenräumen, bei Querschnittverengungen und an Stellen eines Hydrauliksystems vor, wo Pulsationen auftreten. Wenn die in Bewegung befindliche Ölmasse reisst, bilden sich Hohlräume, in die feinste Luftbläschen freigesetzt werden.

Der Dieseleffekt

Wenn die als Folge von Kavitation entstandenen Luftblasen, die auch Ölpartikel enthalten, einem hohen Druck ausgesetzt sind, kommt es zu einer drastischen Temperaturerhöhung in den Bläschen. Diese starke Temperaturerhöhung führt zum Dieseleffekt, also zu Verbrennungen im hydraulischen System. Dieser Verbrennungsprozess läuft binnen Millisekunden ab.

Die Folgen von Kavitation und Dieseleffekt

Kavitation kann eine Vielzahl von negativen Folgen haben, darunter zählen Materialzerstörungen an Pumpgehäusen und Überdruckventilen, das Absaugen von Dichtelementen wie O-Ringen, eine veränderte Durchflusscharakteristik, Wirkminderung bei Pumpen und Getrieben durch Füllungsverluste, Geräusche, Druckstösse mit Druckspitzen, die den Systemdruck überschreiten sowie der Dieseleffekt, der sich in Form von Ölalterungen, Verbrennungsrückständen sowie zerstörten Dichtungen äussert.

Die Folgen von Kavitation und Dieseleffekt sind nicht immer sofort ersichtlich. Oftmals werden sie erst bemerkt, wenn es schon zu spät ist und Reparaturbedarf an den hydraulischen Anlagen besteht. Druckspitzen als Folge von Kavitation und Dieseleffekt können auch zur Überwaschung im System montierte Drucktransmitter beschädigen. Dabei wird durch die plötzliche Druckerhöhung im System die Membran des Druckmessumformers „durchschossen“ (mehr dazu lesen Sie hier).

In Anbetracht der gravierenden Folgen von Kavitation und Dieseleffekt sind entsprechende Massnahmen zur Vermeidung dieser Phänomene zu ergreifen. Dazu gehören eine ausreichende Füllung in den Saugräumen, geringe Strömungsgeschwindigkeiten sowie die Vermeidung scharfer Kanten, Umlenkungen und pulsierender Drücke.

Genaue Druckmessung ist für die Entwicklung einer elektrischen Ölpumpe entscheidend

Genaue Druckmessung ist für die Entwicklung einer elektrischen Ölpumpe entscheidend

Angetrieben durch die steigenden weltweiten Emissionsziele, setzen OEMs zur Reduzierung von Kraftstoffverbrauch und Treibhausgasemissionen in zunehmendem Maße auf die Elektrifizierung. Die Wahl fällt in diesem Zusammenhang häufig auf das Hybrid-Elektrofahrzeug, welches oft von einem stark verkleinerten Motor angetrieben wird.

Das Problem dieser Downsizing-Motoren besteht darin, dass Fahrbarkeit und Leistung durch Energieraubende Hilfssysteme stark beeinträchtigt werden. Glücklicherweise können diese parasitären Verluste deutlich reduziert werden, indem traditionell mechanische Komponenten durch elektrisch angetriebene Einheiten ersetzt werden. Aus diesem Grund gelangen elektrisch angetriebene Pumpen, insbesondere für den Antrieb von Öl- und Wasserpumpen, sehr schnell in die Serienproduktion.

Abbildung 1: Beispiel für eine elektrische Ölpumpe
Bildquelle: Rheinmetall Automotive

Aber auch wenn die Vorteile offensichtlich sind, ist die Elektrifizierung, insbesondere der Ölpumpe, technisch komplex: Ingenieure wollen das Öl nicht nur mit einem bestimmten Volumenstrom und Druck verteilen, sondern möchten diese Variablen auch intelligent an die Motoranforderungen anpassen.

Um die Leistung zu optimieren, ist es wichtig, dass Reibungs- und Pumpverluste durch die sorgfältige Steuerung des Ölstroms in die verschiedenen Zweige des Ölkreislaufs minimiert werden und gleichzeitig stets der richtige Druck herrscht.

Die Simulation beruht auf genauen Messdaten von Öldruck und Volumenstrom auf dem Prüfstand

Eine elektrisch angetriebene Ölpumpe besteht aus drei Teilsystemen – Pumpe, Motor und elektronische Steuerung. Daher ist die primäre Herausforderung jeder neuen Anwendungsentwicklung die effiziente Integration dieser Teilsysteme, um Gesamtgröße und -gewicht sowie die Anzahl der Komponenten zu verringern und gleichzeitig die Leistung zu optimieren.

Die wichtigste Aufgabe der Ölpumpe besteht darin, bei optimalem Druck eine bestimmte Ölmenge zu liefern. Aus diesem Grund beginnt der iterative Designprozess mit dem „Pumpengetriebe“. In den meisten Anwendungsfällen muss die Pumpe einen Druck von mehr als 1 bis 2 bar, oftmals bis zu 10 bar erzeugen.

Wie auch sonst üblich in der Motorenentwicklung, kommt eine Kombination aus Simulation und Prüfung unter realen Bedingungen zum Einsatz, um das Design zu beschleunigen.

Die Entwurfsiterationen beginnen mit der Erstbewertung des volumetrischen Wirkungsgrades anhand von Versuchsergebnissen, die von ähnlichen Pumpen und Anwendungen gesammelt wurden. Dazu gehören Pumpengeschwindigkeit, Öltemperatur, Druck und Volumenstrom.

Da es wichtig ist, dass die für die Schätzung herangezogenen Daten akkurat sind, muss die Datenerhebung mit sehr zuverlässigen, präzisen Messgeräten durchgeführt werden, die unter den im Motorraum herrschenden extremen Bedingungen genaue Messwerte liefern können.

Um die Genauigkeit und Reproduzierbarkeit zu gewährleisten, ist es von zentraler Bedeutung, dass zur Druckmessung nur die besten Qualitätssensoren verwendet werden. Diese Drucksensoren müssen nicht nur in einem großen Druck- und Temperaturbereich zuverlässige Messwerte liefern, sondern auch Vibrationen standhalten können.

STS hat im Laufe der Jahre Sensoren entwickelt, die den Anforderungen von Produzenten (OEM), Teilelieferanten und Motordesignexperten in der Motorenentwicklung gerecht werden.

Die Entwicklung einer elektrischen Ölpumpe, die die mechanische Variante übertrifft 

Auf der Grundlage der Daten zu den hydraulischen Anforderungen bei verschiedenen Volumenströmen, Förderdrücken und Öltemperaturen wird ein erster Entwurf des Getriebes angefertigt. Mithilfe der MatlabSimulink-Software können die Informationen bezüglich des Verhaltens des physikalischen Systems in einen eindimensionalen Code umgewandelt werden.

In diesem Stadium ist zu beachten, dass zur Erzeugung des erforderlichen Durchflusses bei einem bestimmten Druck eine Drehzahl gewählt werden sollte, die die beste Bauform von Motor und Pumpe ohne Kavitationsprobleme oder Strömungsgeräusche ermöglicht: Demnach liegt ein typischer Drehzahlbereich für den Dauerbetrieb in der Regel zwischen 1500 und 3500 U/min.

Im nächsten Schritt können mit der Simulationssoftware LMS Imagine verschiedene Designs erzeugt werden. Mithilfe der Lab Amesim-Software werden die Designparameter – zum Beispiel die Anzahl der Zähne und die Exzentrizität – optimiert, während gleichzeitig alle Randbedingungen für Druck, Durchfluss und Temperatur erfüllt werden.

Nachdem die geometrischen Merkmale der berechneten Hydraulik implementiert und das vorläufige Design abgeschlossen wurden, kann das erforderliche Gesamtdrehmoment, um die Pumpe in kritischen Betriebspunkten anzutreiben, wie folgt berechnet werden:

Mgesamt = MH + MCL + Mη

Wobei:

  • MH für das hydraulische Drehmoment steht, das für die Erzeugung des Drucks und Durchflusses erforderlich ist
  • MCL für die Coulombsche Reibung steht, die dort entsteht, wo sich trockene oder geschmierte Kontakte zwischen Gleitteilen befinden
  • Mη für die viskose Reibung steht, die durch die Fließbewegung in Freiräumen entsteht

Im Anschluss an die Designphase werden Prototypen gebaut, um diese auf einem Motorprüfstand unter realen Bedingungen zu testen.

Nochmals werden Öldruck, Volumenstrom und Temperatur bei verschiedenen Motor- und Pumpgeschwindigkeiten gemessen, um die durch die Simulation gewonnenen Ergebnisse zu bestätigen. Wenn die Ergebnisse den Spezifikationen entsprechen, ist das Entwicklungsprogramm abgeschlossen und das Projekt geht in die Produktionsphase.

Es liegt auf der Hand, dass für eine optimale Leistungsfähigkeit und Haltbarkeit alle Messungen genau aufgezeichnet werden müssen; aber die Relevanz der durch die Drucksensoren erzeugten Messdaten überwiegt möglicherweise alles andere – zu geringer Druck an jedem beliebigen Punkt kann zu einem katastrophalen Fehler führen, während Überdruck Energie verschwendet und zu Problemen mit den Öldichtungen führen kann.

Erprobung von Proportionaldruckreglern in hydraulischen Anlagen

Erprobung von Proportionaldruckreglern in hydraulischen Anlagen

Bei der Erprobung von Proportionaldruckreglern im Rahmen der Entwicklung komplexer hydraulischer Systeme wird eine hohe Impulsfähigkeit und Präzision von der eingesetzten Druckmesssensorik verlangt.

Bei der Entwicklung neuer hydraulischer Systeme wie beispielsweise in der Fahrzeugtechnik müssen eine Vielzahl Komponenten perfekt ineinandergreifen. Neben Erfahrungswerten und Modellen spielen dabei Erprobungsschleifen am Prüfstand eine wichtige Rolle. Entsprechen die von Zulieferern kommenden Komponenten den Spezifikationen? Werden damit bereits optimale Ergebnisse im Gesamtsystem erzielt?

In ölhydraulischen Systemen wie beispielsweise Fahrzeugkupplungen kommt den eingesetzten Druckventilen eine grosse Bedeutung zu. Als mechanisch arbeitende Bauteile müssen sie sorgfältig qualifiziert werden, um negative Effekte wie Überschwingungen oder nachteilige Strömungseffekte gering zu halten. Ein nicht optimal arbeitendes Ventil wirkt sich negativ auf das gesamte System aus. Mit welchen Druckspitzen kann gerechnet werden und wie wirken sie sich auf das System aus? Wie muss das Ventil konstruiert sein, damit möglichst sanfte, schwingungsfreie Kupplungsvorgänge möglich sind? Eine präzise Druckerfassung nimmt bei der Klärung dieser Fragen eine Schlüsselrolle ein. Bis ein harmonisches Gesamtsystem entsteht und diese negativen Effekte weitestgehend ausgeschlossen werden können, sind zahlreiche Tests nötig. Da diese jedoch nicht isoliert am Druckventil sondern im Gesamtsystem durchgeführt werden, sind die Anforderungen an die eingesetzte Sensorik entsprechend hoch.

Druckmessung in hydraulischen Systemen: Spitzenleistung ist gefragt

Als versierter Partner für Druckmessaufgaben im Test & Measurement Bereich konnte STS schon eine Vielzahl Projekte in Zusammenhang mit der Erprobung von Proportionaldruckreglern in hydraulischen Anlagen begleiten. Entsprechend sind wir mit den hohen Anforderungen, die bei Druckmessung an Druckventilen in ölhydraulischen Systemen zu erwarten sind, bestens vertraut.

Aufgrund der immer komplexer werdenden Aufgaben bei der Qualifizierung von hydraulischen Systemen ist Platz inzwischen ein entscheidendes Kriterium. Denn eine Vielzahl Sensorik befindet sich heute an den Systemen. Es gilt daher: Je kleiner, desto besser. Um diesen Anforderungen hinsichtlich Miniaturisierung der Sensorik gerecht zu werden, hat STS letztes Jahr mit dem ATM.mini einen Präszionsdruckmessumformer mit Aussenmassen von nur 17,5 x 49 Millimetern eingeführt, der inzwischen in zahlreichen Prüfständen eingesetzt wird. Ebenfalls ist Flexibilität hinsichtlich der Installation gefragt: Denn nicht nur räumlich muss es passen. Auch hinsichtlich der Prozessanschlüsse gibt es immer wieder andere Vorgaben, die erfüllt werden müssen. Schliesslich können wir aus Erfahrung sagen, dass die Auswahl und Montage der Sensorik bei der Entwicklung einer Anwendung am Prüfstand oftmals am Ende steht und diese sich den geschaffenen Fakten fügen können muss. Aus diesem Grund verfolgt STS ein modulares Bauprinzip, sodass sämtliche Produkte an individuelle Spezifikationen angepasst werden können. Das gilt natürlich auch für den ATM.mini.

Abgesehen von der Grösse sind die „inneren Werte“ ausschlaggebend. Bleiben wir bei der hydraulischen System in der Fahrzeugtechnik: Bei kontinuierlichen Messungen während Tests ist eine sehr gute Impulsfähigkeit ein Muss. Drücke müssen binnen Millisekunden dynamisch erfasst werden können. Darüber hinaus muss dies über einen relativ breites Temperaturband von -30 bis 140°C sehr präzise ablaufen. Die Nichtlinearität darf oftmals bei maximal 0,1 Prozent des Messbereichendwerts liegen (mehr zum Thema Genauigkeit lesen Sie hier). Das schliesst letztlich auch mit ein, dass der Druckmessumformer gegenüber Vibrationen weitestgehend unempfindlich ist. Ein weiterer wichtiger Faktor ist, dass es bei der Erprobung von Komponenten in einem hydraulischen System immer zu Druckspitzen kommen kann, deren Ausmass vorab nicht genau zu bestimmen ist. Für Anwendungen dieser Art ist also ein Druckmessumformer gefragt, dessen Überlastfähigkeit ein Vielfaches des Messbereichs beträgt.

Der ATM.mini aus unserem Hause erfüllt diese Anforderungen. Die Vorteile auf einen Blick:

  • Druckmessbereich von 0…1 bar bis 0…100 bar
  • ausgezeichnete Genauigkeit von 0,1% FS
  • kompaktes Design mit Aussenmassen von 17,5 x 49 Millimeter
  • höchste Präzision über den gesamten Temperaturbereich
  • kompensierter Temperaturbereich von – 40 bis 125°C
  • keine Mediuminkompatibilitäten dank geschweisstem Druckanschluss
  • individuell anpassbare Lösung durch modularen Aufbau
Anwendung von Druckmesstechnik in der Marineindustrie

Anwendung von Druckmesstechnik in der Marineindustrie

In der Marineindustrie und insbesondere beim Schiffbau kommt der Sensorik eine essentielle Rolle zu. Die zuverlässige und korrekte Messung von Druck, Temperatur und weiteren Grössen in verschiedenen Tanks ist eine wichtige Massnahme, um das Austreten von aggressiven Flüssigstoffen zu vermeiden, Wasserkreisläufe im Schiffsbetrieb zu kontrollieren und einen reibungslosen Transport von Fracht auf hoher See zu garantieren. 

Die Sensortechnologie, welche hier zum Einsatz kommt, muss diversen Ansprüchen gerecht werden. Hierzu gehört vor allem, dass das Material robust genug ist um langfristig verwendet werden zu können. Aber auch die Elektronik muss den harschen Bedingungen auf dem offenen Meer standhalten und somit eine hohe Beständigkeit aufweisen.

Überwachung von Trocken- und Flüssigladungen

Der Hauptbestandteil der Fracht besteht aus der zu verschiffenden Ware. Verschifft werden auf dem Seeweg sowohl Trocken- als auch Flüssigladungen. Von Trockenladungen spricht man, wenn Schüttgüter wie Getreide oder Futtermittel oder aber Stückgüter, die meist aus Containern bestehen, befördert werden. Gerade die Flüssigladung bedarf einer besonders sorgsamen und zuverlässigen Überwachung, denn hier werden zumeist sehr empfindliche Stoffe wie Benzin, Öl oder Gasöl transportiert. Um das Austreten von aggressiven Flüssigstoffen zu vermeiden und so Havarien mit schwerwiegenden, ökologischen Konsequenzen zu verhindern, müssen die eingesetzten Produkte besonders robust und zuverlässig sein. So muss auch die Sensorik hohen Ansprüchen gerecht werden.

Frisch- und Abwassertanks

Frisch- oder Trinkwasser wird auf Frachtschiffen entweder in speziellen Trinkwassertanks mitgeführt oder aber via Trinkwasseraufbereitung des Meerwassers gewonnen. Auch die Sammlung, Aufbereitung und Entsorgung von Schiffsabwässern in eigenen Tanksystemen muss durch entsprechende Technologie überwacht werden. Da diese Abwässer oftmals mit schädlichen Substanzen wie Ölen oder Reinigungsmitteln belastet sind, unterliegt die Verarbeitung zusätzlich bestimmten Auflagen. Sowohl Frisch- als auch Abwassertanksysteme werden mittels eingebauter Sensorik überprüft und überwacht.  So können die Systeme effizient kontrolliert werden, was eine optimale Wasserversorgung auf hoher See garantiert.

Ballasttanks

Ballasttanks sind ein wichtiger Bestandteil der Schiffsfahrt. Ohne die Beladung durch diese Tanks sind grosse Frachtschiffe mitunter zu leicht, sodass die Schiffsschrauben nicht tief genug im Wasser liegen. Um genug Tiefgang zu gewähren, werden die Ballasttanks mit Meerwasser gefüllt. Auch ein Ausgleich der Gewichtsverteilung eines beladenen Schiffes ist durch Ballasttanks möglich. Da die Tanks mit Salzwasser gefüllt werden, müssen sowohl die Materialien der Tanks als auch die der eingesetzten Sensorik robust und korrosionsfest sein. Auf hohe Zuverlässigkeit und Beständigkeit wird auch deshalb besonders geachtet, weil die Sensorik während der Seefahrt im laufenden Bordbetrieb nahezu unzugänglich ist und so ohne jegliche manuelle Wartung oder Überprüfung einwandfrei funktionieren muss.

Bild1:Installationsoptionen für die Füllstandsmessung

Spezielle Anforderung an die Sensorik

Für den Schiffbau haben sich im Laufe der letzten Jahre beständig entscheidende Neuerungen ergeben, auf die auch bei der Produktion der eingesetzten Sensorik entsprechend reagiert werden muss. Setzte man vor 15 Jahren beispielsweise noch auf die Robustheit von rostfreiem Stahl, weiss man heute, dass dieser beim Kontakt mit Salzwasser ab einer Temperatur über 21 Grad korrodiert. Stattdessen wird heutzutage Titan verwendet. STS hat die Problematik früh erkannt und als eines der ersten Unternehmen Titan als festen Bestandteil der Sensor-Technologie eingesetzt. Mittlerweile wird das überaus stabile und robuste Material standardmässig für eine Vielzahl von Drucktransmittern und Tauchsonden verwendet, da es selbst den widrigsten Umständen standhält.

Die Anforderungen an die Technologie ändern sich mit dem Wachstum und der Weiterentwicklung der Branche beständig. Was noch vor Kurzem als Standard galt, kann heute schon unzureichend sein. STS ist deshalb bemüht, die angebotene Sensorik ständig weiterzuentwickeln und so die Zuverlässigkeit und Genauigkeit auch bei erhöhten Ansprüchen der Industrie zu gewähren. Diese Flexibilität und Qualität zahlt sich aus: Die Retourquote ist verschwindend gering und Probleme entstehen eher durch menschliches Versagen als durch fehlerhafte Technik.

Zusammenarbeit mit AE Sensors

Seit nun mehr 27 Jahren arbeitet STS mit dem niederländischen Familienbetrieb AE Sensors zusammen. Gemeinsam werden Grosskunden der Schiffsindustrie mit Sensor-Technologie versorgt. Dank kompetenter Beratung und dem Einsatz von flexiblen Lösungen konnten unsere Kunden in kurzer Zeit ein enormes Wachstum verzeichnen. Mittlerweile werden auf Werften in aller Welt hochmoderne Schiffe gebaut, in denen Tauchsonden, Drucktransmitter und andere massgeschneiderte Lösungen von STS eingesetzt werden. Standardmässig werden vor allem ATM/N und ATM.1ST/N Sensoren aus Titan mit Teflonkabel verwendet.

Dank modularem Montagesystem kann die Installation der Sensoren variabel an entsprechende Anforderungen angepasst werden. Auch können unterschiedliche Messarten, wie beispielsweise Über- oder Absolutdruck, verwendet werden. Die hohe Flexibilität von STS und unserem Partner AE Sensors und die einwandfreie Qualität der Sensorik hat sich somit in langjähriger Zusammenarbeit mit unseren zufriedenen Kunden bewährt. 

Druck entriegelt das Potenzial von verdichtetem Erdgas

Druck entriegelt das Potenzial von verdichtetem Erdgas

Dank seiner sehr hohen Energiedichte ist verdichtetes Erdgas für den Einsatz als Fahrzeugkraftstoff gut geeignet. Erdgas hat eine Oktanzahl von etwa 120 und eine Verbrennungswärme von 9.000 bis 11.000 kcal/kg oder 38 bis 47 MJ/kg.

Darüber hinaus produziert die Verbrennung von Erdgas deutlich weniger CO2-Emissionen, als es z. B. bei der Verbrennung von Benzin der Fall ist. Und da Erdgas in vielen Märkten einen besonders kostengünstigen Kraftstoff darstellt, zeigen Hersteller ein wachsendes Interesse an der Entwicklung von Fahrzeugen, die mit dieser alternativen Energiequelle angetrieben werden können.

Die größte Herausforderung bei der Optimierung des Erdgas-Antriebs für einen Verbrennungsmotor ist die Regulierung des Einblasdrucks in den Kraftstoffverteiler.

Abbildung 1: Beispiel für ein Zwei-Kraftstoffsystem für Benzin und Erdgas
Bildquelle: Bosch Mobility Solutions

Erdgas wird bei etwa 200 bar gespeichert und wird je nach Motoranforderung üblicherweise in einem Druckbereich von zwei bis neun bar eingeblasen– Niederdruck für sparsames Fahren im unteren Geschwindigkeitsbereich und höhere Drücke für mehr Leistung und ein höheres Drehmoment.

Der Wirkungsgrad der Verbrennung im Motorzylinder hängt stark von der Temperatur und dem Druck des Erdgases ab: Eine Druckerhöhung bei konstantem Volumen führt zu einer höheren Dichte des Gases, wodurch auch der Heizwert ansteigt.

Aber obwohl die Ausgangstemperatur und der anfängliche Injektionsdruck variiert werden können, weisen mit verdichtetem Erdgas angetriebene Fahrzeuge Leistungsverluste und ein schlechtes Fahrverhalten auf, wenn in der Entwicklung keine präzise Kalibrierung erfolgt.

Injektion von Erdgas unter Druck

Erdgas wird dem Kraftstoffverteiler in der Regel aus einem Hochdrucktank über einen Druckregler zugeführt. Für eine effiziente Kraftstoffverbrennung muss die Menge an injiziertem Erdgas immer an den Luftbedarf des Motors angepasst werden. Um das zu erreichen, bedient sich die elektronische Motorsteuerung in der Regel eines Luftmengenmessers, um den genauen Luftbedarf und anschließend die zu injizierende Menge an Erdgas zu bestimmen.

Durch die Zentraleinblasung (Central Point Injection – CPI) wird das Erdgas von einem Erdgas-Einblasmodul (Natural Gas Distributor – NGD) in den Ansaugkrümmer eingeblasen. Ein Mitteldrucksensor misst den Druck und die Temperatur im Einblasmodul, damit die Einblasventile exakt die benötigte Menge an Kraftstoff zur Verfügung stellen.

Alternativ kann die Injektion auch ohne das Einblasmodul erfolgen, indem jedem Einblasventil ein entsprechender Zylinder zugeordnet wird. Bei der Mehrpunktinjektion (Multi Point Injection – MPI) wird das Gas dezentral an den jeweiligen Saugrohr-Einzelenden vor dem Zylindereinlassventil eingeblasen.

Da Druckänderungen bei einem Erdgas-Antrieb einen erheblichen Einfluss auf die Motorleistung, das Motordrehmoment und die Abgasemissionen (CO, CO2, NOx und Kohlenwasserstoffe) haben, müssen all diese Werte während eines Motorentests aufgezeichnet werden.

Optimierung des Raildrucks für alle Fahrbedingungen

Zur Optimierung des Erdgas-Systems ist es wichtig, dass während der Konzeptions- und Testphasen der Innendruck des Rails bei verschiedenen Drosselklappenstellungen präzise gemessen und auf das Drehmoment und die entsprechenden Abgasemissionen bezogen wird. Folglich verlangen die meisten Entwicklungsingenieure nach qualitativ hochwertigen Drucksensoren.

Es ist wichtig, dass diese Sensoren in einem großen Druckbereich genaue Messwerte liefern und auch bei höheren Temperaturen stabil bleiben.

Obwohl eine Erhöhung des Erdgas-Drucks zu einer Reduzierung von CO2, HC und NOx führt, steigt der CO-Anteil im Abgas: Darum ist es entscheidend, die Auswirkungen der Modulation des Erdgas-Einblasdrucks genau zu erfassen.

In der Testphase wird ein Druckregler zur Steuerung des Injektionsdrucks verwendet; dessen Wirkungsgrad wird durch einen im Rail angebrachten präzise kalibrierten Drucksensor gemessen, während ein analoger Durchflussmesser mit einem typischen Messbereich von 2,5 m3/h zur Messung und Kontrolle der Durchflussrate der Ansaugluft dient. Ein Rollenprüfstand wird verwendet, um das Drehmoment des Motors zu erfassen.

Für die Dauer des Tests liegen die Gastemperatur und die Durchflussrate konstant bei 22° C beziehungsweise 0,1 SCFM.  Für den Test wird die Motortemperatur mittels eines Hochleistungsgebläses konstant gehalten und ein Emissionsprüfgerät an den Auspuff angeschlossen, um die CO-, CO2-, Kohlenwasserstoff- und NOx-Werte im Abgas aufzuzeichnen.

Der Prozess ist sehr komplex und erfordert, dass Raildruck, Drehmoment und Emissionen bei Hunderten unterschiedlicher Drosselklappenstellungen gemessen werden, damit alle notwendigen Daten für die Anforderungen des Motors an das Motorsteuergerät abgebildet werden können.

Das Messen, Aufzeichnen und die Eingabe dieser Daten in die entsprechenden Tabellen ist eine zeitintensive Aufgabe, weshalb Entwicklungsingenieure oft auf Modellierungstools zurückgreifen, um die Entwicklung zu beschleunigen. Diese Tools bieten häufig eine Umgebung für die Simulation und das modellbasierte Design von dynamischen und eingebetteten Systemen, wodurch die erforderliche Anzahl von Hardwareversionen zum Design des Systems reduziert wird.

Das Simulationsmodell wird mit den Informationen aus den Echtzeittests programmiert; daraus wird eine ausführbare Datei erzeugt, die mittels C-Compiler in einem Echtzeit-Betriebssystem verwendet werden kann.

Sobald die Ausgangsdaten erfasst wurden, kann für jeden Aspekt des Designzyklus eine unendliche Anzahl von Echtzeitsimulationen generiert werden – vom ersten Konzept über den Entwurf des Reglers bis hin zu Test und Validierung mithilfe von Hardware-in-the-Loop (HIL)-Simulationen.

Im Rahmen eines ausgefeilten Testprogramms mit Drucktransmitter in Laborqualitätund Prüfgeräten weisen Fahrzeuge mit Erdgas-Antrieb eine Leistungsfähigkeit und Fahrbarkeit auf, die mit der von Fahrzeugen vergleichbar ist, die von fossilen Brennstoffen angetrieben werden; gleichzeitig bieten Erdgas-Fahrzeuge Kosten-und Emissionsvorteile.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!