Deprecated: Der Hook wp_smush_should_skip_parse ist seit Version 3.16.1 veraltet! Verwende stattdessen wp_smush_should_skip_lazy_load. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Pegelsonde Archives - Seite 2 von 2 - STS Switzerland (DE)
Deprecated: Der Hook wp_smush_should_skip_parse ist seit Version 3.16.1 veraltet! Verwende stattdessen wp_smush_should_skip_lazy_load. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Altlasten: Grundwasserdekontamination braucht robuste Pegelsonden

Altlasten: Grundwasserdekontamination braucht robuste Pegelsonden

Ob alte Mülldeponien, Kohlehalden, ehemalige Militärplätze oder Raffinerien: Übrig bleibt kontaminierter Boden, der eine Gefahr für Mensch und Umwelt ist. Bei der Sanierung dieser Orte braucht es ob der oft aggressiven Gefahrenstoffe widerstandsfähige Pegelsonden.

Altlasten sind nicht nur durch gesundheits- oder umweltschädliche Veränderungen des Bodens gekennzeichnet. Bei fehlenden Sicherungsmassnahmen (wie bei alten Mülldeponien) und je nach Bodenbeschaffenheit werden die gefährlichen Stoffe durch Regen bis ins Grundwasser gespült. Je nach Nutzungsart können eine Reihe unterschiedlicher Gefahrenstoffe angetroffen werden, darunter u.a.:

  • Schwermetallverbindungen: Kupfer, Blei, Chrom, Nickel, Zink und Arsen (Halbmetall)
  • Organische Stoffe: Phenole, Mineralöl, Benzole, chlorierte Kohlenwasserstoffe (LCKW), aromatische Kohlenwasserstoffen (PAK)
  • Salze: Chloride, Sulfate, Karbonate

Dekontamination der Grundwasserversorgung

Bei der Sanierung von Altlasten ist neben der Säuberung des Bodens auch die Kontrolle und Reinigung des Grundwassers von grosser Bedeutung. Ohne zuverlässige Pegelsonden, die den widrigen Bedingungen standhalten können, ist dies nicht möglich.

Üblicherweise läuft das Dekontaminationsverfahren wie folgt ab: Das kontaminierte Grundwasser wird an die Oberfläche gepumpt und aufbereitet. Als gefiltertes Spülwasser wird es dann wieder in den Kontaminationsherd gebracht. Damit das Spülwasser nicht zu einer dem Kontiminationsherd abgewandten Seite fliesst, werden aktive hydraulische Verfahren zur Schutzinfiltration eingesetzt. Wasser wird über mehrere Brunnen um das eigentliche Dekontaminationsverfahren herum in den Boden gegeben. Die dadurch hergestellten Druckverhältnisse bilden gewissermassen eine Sperrwand und bewirken, dass das Spülwasser zum Kontaminationsherd fliesst. Um diesen Prozess zu steuern und zu überwachen, braucht es Pegelsonden.

Abbildung 1: Ablauf eines Dekontaminationsverfahrens

Pegelsonden werden natürlich auch im Nachgang der Sanierungsarbeiten eingesetzt. So werden die betreffenden Stellen noch lange Zeit nach Abschluss der Arbeiten überwacht, um zu prüfen, ob es auffällige Änderungen des Wasserspiegels oder der Fliessrichtung gibt.

Natürlich werden Pegelsonden auch bei aktivem Betrieb potenziell umweltschädigender Anwendungen eingesetzt. Neuere Mülldeponien sind wie ein undurchlässiges Becken aufgebaut. Der Grundwasserspiegel unter der Deponie wird abgesenkt, so dass im Falle einer Leckage kein Wasser in angrenzende Gebiete fliessen kann. Auch hier sind die jeweiligen Wasserstände durch Pegelsonden zu überwachen.


Pegelsonden in kontaminierten Gewässern: Hohe Anforderungen

Anwender im Bereich Dekontamination von Altlasten sollten bei der Wahl geeigneter Pegelsonden sehr sorgfältig vorgehen. Aufgrund der Vielzahl von Stoffe, die im Wasser gelöst sein können, gibt es nicht die eine Lösung, die für jeden Fall verlässlich arbeitet. Dabei sind verschiedene Aspekte zu beachten, die wir im Folgenden kurz darstellen:

Materialien

Gehäuse

In den meisten Anwendungen ist ein hochwertiger Edelstahl, wie ihn STS verwendet, ausreichend, um die Messzelle vor aggressiven Stoffen zu schützen. Kommt es zu Kontakt mit Salzwasser, ist ein Titangehäuse zu wählen. Wenn mit galvanischen Effekten zu rechnen ist, sollte eine Pegelsonde aus PVDF gewählt werden.

Abbildung 2: ATM/NC chemisch beständige Pegelsonde mit PVDF Gehäuse

Sondenkabel

Weitaus kritischer als die Wahl eines geeigneten Gehäuses ist unserer Erfahrung nach die Wahl des Sondenkabels. Aufgrund von schleichenden Diffusionsprozessen ist der Prozess der Zerstörung nicht sofort ersichtlich. Oftmals ist er auch bei entstandenem Schaden nicht von aussen zu erkennen. Daher ist besondere Vorsicht bei der Konsultation von Beständigkeitstabellen geboten: Denn diese sagen in der Regel wenig über den Sonderfall Sondenkabel aus. In der Mitte eines Sondenkabels befindet sich ein Luftröhrchen, das dem Relativdruckausgleich dient. Wenn das Material des Kabels nicht zu hundert Prozent beständig ist, können Grundstoffe durch den Kabelmantel diffundieren und über das Luftröhrchen in den Sensorchip wandern.

Je nach den zu erwartenden Stoffen können Anwender bei STS auf PE-, PUR oder FEP-Kabel zurückgreifen. Letzteres kann auch bei sehr hohen Temperaturen von bis zu 110 °C eingesetzt werden.

Montage

Kabelverlegung

Alte Deponien oder Industriestandorte sind raue Umgebungen. Nicht nur die Gefahrenstoffe können die Funktionalität der eingesetzte Pegelsonden beeinträchtigen. Es ist darauf zu achten, dass der Kabelmantel nicht durch mechanische Belastungen (z.B. Schutt) beschädigt wird. Auch Scheuer- und Knickstellen sind zu vermeiden. Es empfiehlt sich daher, bei der Kabelverlegung spezielle Schutzschläuche, wie sie auch von STS angeboten werden, zu verwenden.

Zugentlastung

Die Druckfestigkeit von Pegelsonden variiert von Hersteller zu Hersteller. Bei STS sind alle Pegelsonden standardmässig bis zu 250 Meter druckfest und das Kabel ist bis zu dieser Tiefe auch für normale Zugbelastungen ausgelegt. Dennoch sollten Anwender bei schwierigen Montagebedingungen über die Verwendung einer Zugentlastung nachdenken.

Befestigung

Wird die Sonde bei fliessenden Gewässern oder Tanks mit Rührwerken eingesetzt, kann diese entweder mit einem G ½ Gewinde am Kabelaustritt (Rohrbefestigung) oder mit einer Klemmringverschraubung (15 mm) geliefert werden.

Explosionsschutz

In Anwendungen, bei denen mit einer Reihe gefährlicher Stoffe zu rechnen ist, muss unbedingt auch auf einen Explosionsschutz geachtet werden. Auskunft darüber gibt die internationalen Standards entsprechende ATEX-Zulassung.

Die Kraft des Wassers: Erneuerbare Energie aus dem Meer

Die Kraft des Wassers: Erneuerbare Energie aus dem Meer

Die Idee, die Kraft des Meeres zur Energiegewinnung zu nutzen, ist nicht neu. Die Herausforderung ist dabei, effiziente Energieumwandlungssysteme zu entwickeln, die die Kosten gering halten und die Umwelt kaum beeinträchtigen. In Italien ist mit REWEC3 in dieser Hinsicht ein vielversprechendes Projekt entstanden.

Der Resonant Wave Energy Converter (REWEC3) ist eine fortgeschrittene Technologie, die aus der Energie der Meereswellen elektrischen Strom produziert. Im Hafen von Civitavecchia wurde die erste Anlage dieses Typs erfolgreich verbaut. Das Funktionsprinzip folgt den Oscillating Water Columns (OWC) Anlagen.

OWCs haben grosses Potential als erneuerbare Energiequelle mit geringer Umweltbelastung. Wenn der Wasserspiegel um und innerhalb eines OWC steigt, wird durch das Wasser Luft in einem Sammelraum verdrängt und vorbei an einem Power-Take-Off (PTO) System hin und her geschoben. Das PTO-System wandelt die Luftströmung in Energie um. Bei den Modellen, die den Luftstrom zu Strom umwandeln, besteht das PTO-System aus einer bidirektionalen Turbine. Das bedeutet, dass sich die Turbine unabhängig von der Richtung des Luftstroms immer in die gleiche Richtung dreht, so dass kontinuierlich Energie erzeugt wird.

Die REWEC3-Anlage in Civitavecchia ging aus einem Forschungsprojekt der Mediterranea University in Reggio Calabria hervor und wird heute von der Firma Wavenergy.it betrieben. Die Anlage ist im Wesentlichen ein verstärkter Senkkasten aus Beton. Der Senkkasten weist auf der den Wellen zugeneigten Seite einen vertikalen Schacht (1) auf, der über eine Öffnung (2) mit dem Meer auf der einen Seite sowie durch eine tiefer gelegene Öffnung (4) mit einem Innenraum (3) auf der anderen Seite verbunden ist. Dieser innere Raum enthält Wasser im unteren Teil (3a) und eine Lufttasche im oberen Bereich (3b). Ein Luftschacht (5) verbindet diese Lufttasche über eine Selbstgleichrichterturbine (6) mit der Umgebungsluft. Die Wellenbewegungen erzeugen Druckveränderungen am Eingang des vertikalen Schachts (2). Das Wasser im Schacht steigt und sinkt dadurch im Inneren des Schachts (1). Dadurch wird die Lufttasche im oberen Bereich des Schachts wechselnd komprimiert oder expandiert. Die Luftströmungen im Luftschacht (5) treiben die Selbstgleichrichterturbine (6) an.

Das Prinzip der REWEC3-Anlagen nutzt also die Wellenbewegungen des Meeres zur Stromerzeugung. Die Luft in der Luftammer wird abwechselnd komprimiert (durch Wellenberge) und dekomprimiert (durch Wellentäler), so dass ein alternierender Luftstrom in einem Kanal erzeugt wird, der eine Selbstgleichrichterturbine antreibt. Durch einen Koaxial-Generator wird schliesslich elektrische Energie erzeugt.

Die Vorteile der REWEC3-Anlage bei der Energiegewinnung sprechen für sich:

  • Sie greift visuell nicht ins Landschaftsbild ein, da sie von aussen kaum zu erkennen ist.
  • Sie dämpft die Wirkung von Wellen und mildert die Auswirkungen von Stürmen an der Küste.
  • Die Meeresfauna wird durch überirdische Lage der Turbinen nicht gefährdet.
  • Eine einen Kilometer lange Anlage kann jährlich 8.000 MWh produzieren.

Bei einer Anlage wie REWEC3 braucht es natürlich eine verlässliche sowie schnelle Überwachung der Druckunterschiede, die durch die auftreffenden Wellen entstehen. Nach ausgiebigen Tests entschieden sich die Forscher der Mediterranea University 2008 für die Präzisions-Pegelsonde ATM.1ST/N von STS. Ausschlaggebend für die Entscheidung zugunsten des ATM.1ST/N Druck Transmitters waren die sehr kurzen Ansprechzeiten von < 1ms / 10 … 90% FS und die sehr gute Langzeitstabilität über einen weiten Temperaturbereich. Auch die Tatsache, dass sich Messinstrumente aus dem Hause STS dank des modularen Aufbaus unkompliziert an verschiedene Anforderungen anpassen lassen, sprach für sich. So konnten die verwendeten ATM.1ST/N Pegelsonden unkompliziert für die Verwendung mit National Instruments Datenloggern konfiguriert werden.

Bildquelle (grafische Darstellung REWEC3): Wavenergy.it

 

Hydrostatische Druckmessung mit piezoresistiven Pegelsonden

Hydrostatische Druckmessung mit piezoresistiven Pegelsonden

Lebensspender, Lebensgefahr oder einfach nur eine Erfrischung im Sommer: Das Element Wasser bestimmt das tägliche Leben auf der Erde auf vielfältige Weise. Ob seiner Bedeutung ist eine gesicherte Überwachung dieses Elements unerlässlich.

Was man nicht messen kann, kann man auch nicht effizient bewirtschaften. Von der Frischwasserförderung über die Trinkwasseraufbereitung, Trinkwasserspeicherung, die Messung des Wasserverbrauches, der Abwasseraufbereitung bis hin zur Hydrometrie: Ohne korrekte Eingangsgrössen kann nicht wirtschaftlich gearbeitet und geplant werden. Um die heute komplexe hydrometrische Infrastruktur zu erfassen, stehen eine Reihe Geräte und Verfahren zur Auswahl. Der Klassiker der Wasserstandmessung ist dabei sicherlich die Pegellatte, bei der eine Genauigkeit von +/- 1 cm anzulegen ist und die natürlich noch völlig „analog“ funktioniert – also unter Augenschein genommen werden muss und ohne elektronische Datenübertragung auskommt. Eine Remote-Übertragung der gemessenen Daten leisten dafür heute weitaus fortschrittlichere und präzisere Instrumente: Piezoresistive Drucksonden zur Wasserstandmessung in Grund- und Oberflächengewässern.

Pegelmessung mit Drucksensoren

Drucksensoren zur Pegelmessung werden am Grund des zu überwachenden Gewässers angebracht. Im Gegensatz zur Pegellatte kann man sie in aller Regel also nicht in Augenschein nehmen, ohne dabei nass zu werden. Das ist auch nicht nötig. Denn piezoresistive Pegelsonden wurden entwickelt, um den heutigen Anforderungen hinsichtlich Prozessautomatisierung und -kontrolle gerecht zu werden. Dazu gehört selbstredend, dass Pegelstände ohne menschliches Zutun gemessen werden können, was eine kontinuierliche Überwachung an schwer zugänglichen Orten erst ermöglicht.

Hydrostatische Pegelsonden erfassen den hydrostatischen Druck am Grund des Gewässers. Der hydrostatische Druck verhält sich proportional zur Höhe der Flüssigkeitssäule. Er ist des Weiteren abhängig von der Dichte der Flüssigkeit und der Erdanziehungskraft. Nach dem Pascal’schen Gesetz ergibt sich daraus die folgende Berechnungsformel:

p(h) = ρ * g * h + p0

p(h) = hydrostatischer Druck

ρ= Dichte der Flüssigkeit

g = Erdbeschleunigung 

h = Höhe der Flüssigkeitssäule

Wichtige Vorkehrungen zur reibungslosen Füllstandsüberwachung

Dadurch, dass piezoresistive Pegelsonden am Boden des Gewässers platziert werden, sind sie von Oberflächeneinflüssen geschützt. Weder Schaum noch Treibgut können die Messungen beeinflussen. Natürlich müssen sie an den zu erwartenden Bedingungen unter Wasser angepasst sein. Bei Salzwasser ist beispielsweise eine Pegelsonde mit Titangehäuse zu bevorzugen. Ist mit galvanischen Effekten zu rechnen, ist ein Messgerät aus PVDF die beste Wahl. In den meisten Süssgewässern ist ein hochwertiger Edelstahl völlig ausreichend. Darüber hinaus ist eine ausreichende Erdung der Pegelsonden unabdingbar, um beispielsweise Schäden durch Blitzeinschlag vorzubeugen (mehr zu diesem Thema lesen Sie hier).

Moderne Pegelsonden: Alle Daten, ein Gerät

Piezoresistive Pegelsonden können zur Füllstandüberwachung in offenen Gewässern wie Seen, in Grundwasservorkommen sowie in geschlossenen Tanks eingesetzt werden. Handelt es sich um ein offenes Gewässer, wird mit Relativdrucksonden gearbeitet. Bei diesen Geräten wird über eine Kapillare im Drucksondenkabel für den Luftdruckausgleich gesorgt. In Tanks wird üblicherweise ein Differenzdrucksensor verwendet, da die auf die Flüssigkeit drückende Gasdecke miteinbezogen werden muss (mehr zu diesem Thema lesen Sie hier).

Da piezoresistive Pegelsonden ihren Dienst weitestgehend autark verrichten und auch für sehr hohe Drücke optimiert werden können, sind Messungen in sehr grosser Tiefe möglich. Der Tiefe sind theoretisch kaum Grenzen gesetzt, das Drucksondenkabel muss lediglich lang genug sein.

Abbildung 1: Beispiele von Pegelsonden zur hydrostatischen Druckmessung

Abgesehen davon, dass hinsichtlich der Tiefe kaum Grenzen gesetzt sind, sind diese modernen Messgeräte auch äusserst vielseitig. Schliesslich ist nicht nur der Pegelstand eines Gewässers für den Menschen von Interesse. In Bezug auf die Überwachung von Grundwasser ist auch die Wasserqualität von grosser Bedeutung. Die Reinheit eines Grundwassereservoirs lässt sich beispielsweise auch über dessen Leitfähigkeit bestimmen: Je geringer die Leitfähigkeit, desto reiner das Wasser (mehr zum Thema Leitfähigkeit lesen Sie hier). Neben Leitfähigkeitssensoren sind Pegelsonden heute auch mit integrierter Temperaturmessung erhältlich. Somit ermöglichen piezoresistive Pegelsonden eine grosse Bandbreite an Überwachungsaufgaben und sind ohne Frage in den meisten Fällen der Pegellatte vorzuziehen.

Pegelsonden durch Erdung vor Überspannung schützen

Pegelsonden durch Erdung vor Überspannung schützen

Bei der Füllstandsüberwachung ist auf eine ausreichende Erdung der Pegelsonden zu achten, um gravierende Schäden zu verhindern. Ist diese unzureichend oder nicht vorhanden, kann dies drei gravierende Effekte nach sich ziehen.

  1. Because of insufficient potential equalization in conductive media such as water, corrosion can occur. This is a gradual process, which can be observed in long-term applications. The voltage differences between the sensor and its surrounding fluid lead to electrolytic corrosion. The metal housing becomes gradually perforated and liquid then penetrates into the housing itself. Damage to the electronics will then be the consequence here. This process can be observed both in open waters and in fill level monitoring within vessels, where the potential difference between the level sensor, medium and vessel wall can cause electrochemical corrosion.
  2. Filling level sensors are connected to the control system by cables or plugged into telemetric systems. Through these connections, atmospheric voltages can be passed on to the sensor. Overstrain to the electronics will be the end result in this case.
  3. If lightning strikes near the level probe, a very high voltage difference will exist over the shorter term. The increased voltage in the water will then seek the shortest path to earth here via the level sensor.

Grounding and lightning protection of level sensors

To protect level sensors from these effects, they can be equipped with lightning protection. For this purpose, a transient overvoltage protection is integrated into the level probe, which will react to rapidly rising voltage differences. Should a sudden voltage surge occur, the lightning arrester will trigger a short circuit within the electrical circuitry to channel that overvoltage to ground. This surge protector normally operates in a non-conductive state, but does conduct voltage transients so that they can flow to ground without causing any damage. It should be noted, however, that with a direct lightning strike to the immersion probe, even overvoltage protection cannot prevent damage.

Additionally, an earth connection that should have a resistance of less than 100 ohms is used for grounding. For fill level monitoring in liquid-carrying tanks made of metal or even plastic, care must be taken that all of the isolated metallic components are connected together to ground. In open waters, a greater effort is generally required to create a low resistance to ground. For this reason, an earthing grid is often set into the ground for these applications.

Users are generally advised to discuss a grounding concept with the manufacturers in regard to their respective application.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!