CTD (Leitfähigkeit, Temperatur, Tiefe)

CTD (Leitfähigkeit, Temperatur, Tiefe)

Eine CTD – ein Akronym für Leitfähigkeit, Temperatur und Tiefe – ist das wichtigste Instrument zur Bestimmung der wesentlichen physikalischen Eigenschaften des Meerwassers. Es bietet Wissenschaftlern eine genaue und umfassende Darstellung der Verteilung und Variation von Wassertemperatur, Salzgehalt und Dichte, um zu verstehen, wie die Ozeane das Leben beeinflussen.

Wie es funktioniert.

Die CTD an Bord besteht aus einer Reihe von kleinen Sonden, die an einem großen Metallrosettenrad befestigt sind. Die Rosette wird über ein Kabel auf dem Meeresboden versenkt, und die Wissenschaftler überwachen die Wassereigenschaften in Echtzeit über ein Datenkabel, das die CTD mit einem Computer auf dem Schiff verbindet. Mit einer ferngesteuerten Vorrichtung können die Wasserflaschen während des Aufstiegs des Instruments gezielt geschlossen werden. Eine Standard-CTD benötigt je nach Wassertiefe zwischen zwei und fünf Stunden, um einen kompletten Datensatz zu sammeln. Wasserproben werden oft in bestimmten Tiefen gesammelt, damit die Wissenschaftler etwas über die physikalischen Eigenschaften der Wassersäule an diesem bestimmten Ort und zu diesem Zeitpunkt erfahren können.

Kleine CTD-Sensoren mit geringem Stromverbrauch werden auch in autonomen Instrumenten verwendet:

Wassersäulen-Profiler macht wiederholte Messungen von Meeresströmungen und Wassereigenschaften auf und ab durch fast die gesamte Wassersäule, auch in sehr tiefem Wasser. Die Basisinstrumente, die er trägt, sind eine CTD für Temperatur und Salzgehalt und ein ACM (Acoustic Current Meter) zur Messung der Strömungen, aber es können auch andere Instrumente hinzugefügt werden, einschließlich biooptischer und chemischer Sensoren.

Die „Spray Gliders“ durchstreifen den Ozean unabhängig, fahren vorprogrammierte Routen und tauchen gelegentlich auf, um gesammelte Daten zu übertragen und neue Befehle entgegenzunehmen. Während sie horizontal durch den Ozean fahren, steuern interne Blasen ihren Auftrieb, so dass sie wie Wale und andere Meerestiere durch die Wassersäule auf- und abwärts navigieren können.

Floats sind schwimmende Roboter, die Profile oder vertikale Messreihen (z.B. Temperatur und Salzgehalt) in den Ozeanen aufnehmen.

Autonome Unterwasserfahrzeuge (AUVs) sind programmierbare Roboterfahrzeuge, die je nach Konstruktion ohne Echtzeitsteuerung durch menschliche Bediener durch den Ozean driften, fahren oder gleiten können. Einige AUVs kommunizieren mit dem Bediener periodisch oder kontinuierlich über Satellitensignale oder akustische Unterwasserbaken, um ein gewisses Maß an Kontrolle zu ermöglichen.

Welche Plattformen werden benötigt?
Eine Vielzahl von anderem Zubehör und Instrumenten kann mit dem CTD-Paket mitgeliefert werden. Dazu gehören Niskin-Flaschen, die Wasserproben in verschiedenen Tiefen sammeln, um chemische Eigenschaften zu messen, akustische Doppler-Strömungsprofiler (ADCP), die die horizontale Geschwindigkeit messen, und Sauerstoffsensoren, die den Gehalt an gelöstem Sauerstoff im Wasser messen.

Merkmale der Sensoren der CTD

– Salzwasserbeständig
– Hohe Genauigkeit
– Leichtes Gewicht
– Geringer Stromverbrauch
– Wird in Tiefen von bis zu mehreren tausend Metern eingesetzt

Anmerkungen:
Die kleinen CTD-Sensoren mit geringem Stromverbrauch, die auf autonomen Instrumenten wie Wassersäulen-Profilern, Sprühgleitern, Schwimmern und AUVs verwendet werden, sind komplexer zu bedienen. Die wichtigste Einschränkung ist die Notwendigkeit, die einzelnen Sensoren zu kalibrieren. Dies gilt insbesondere für autonome Instrumente, die über längere Zeiträume eingesetzt werden. (Schiffs-CTDs beziehen sich auf Wasserprobendaten, die bei autonomen Instrumenteneinsätzen in der Regel nicht verfügbar sind). Daher müssen die Sensoren für den Einsatzzeitraum stabil sein, oder es müssen Annahmen über die Eigenschaften des Meerwassers getroffen und auf die Daten bezogen werden. Die Eigenschaften des Tiefenwassers sind in der Regel sehr stabil, daher werden die autonomen Sensordaten mit den historischen Wassereigenschaften in der Tiefe abgeglichen.
STS bietet hochpräzise Druckzellen für diese spezielle Anwendung.

Mehr Informationen über dieses kundenspezifische Produkt

Wasserstoff-Effekt auf Piezo-Wandler (biofouling)

Wasserstoff-Effekt auf Piezo-Wandler (biofouling)

-BIOFOULING

Unter Biofouling oder biologischem Bewuchs versteht man die Ansammlung von Mikroorganismen, Pflanzen, Algen oder Tieren auf benetzten Oberflächen, Geräten wie z.B. Wassereinläufen, Rohrleitungen, Rosten, Teichen und natürlich auch auf Messgeräten, wodurch der primäre Zweck dieser Gegenstände beeinträchtigt wird.

ANTIFOULING

Antifouling ist der Prozess, diese Ablagerungen zu entfernen bzw. deren Bildung zu verhindern. Es gibt verschiedene Lösungen, um Bewuchsvorgänge an Schiffsrümpfen und in See- oder Brackwassertanks zu reduzieren / zu verhindern.

Spezielle toxische Beschichtungen, die die Biofouling-Organismen abtöten; mit der neuen EU-Biozid-Richtlinie wurden viele Beschichtungen aus Gründen der Umweltsicherheit untersagt.

  • Ungiftige Anti-Haft-Beschichtungen, die das Anhaften von Mikroorganismen auf den Oberflächen verhindern. Diese Beschichtungen basieren meist auf organischen Polymeren. Sie setzen auf geringe Reibung und niedrige Oberflächenenergien.
  • Antifouling mit Ultraschall. Ultraschallwandler können bei kleinen bis mittelgroßen Booten im oder um den Rumpf herum montiert werden. Die Systeme basieren auf einer Technologie, die sich bei der Bekämpfung von Algenblüten bewährt hat.
  • Gepulste Laserbestrahlung. Die Plasma-Impuls-Technologie ist wirksam gegen Zebramuscheln und wirkt durch Betäubung oder Abtötung der Organismen mit Mikrosekunden dauernden, energiereichen Hochspannungsimpulsen auf das Wasser.
  • Antifouling durch Elektrolyse
  • Organismen können in einer Umgebung mit Kupferionen nicht überleben.
  • Kupferionen entstehen durch Elektrolyse mit einer Kupferanode.
  • In den meisten Fällen dient das Tankgehäuse oder der Schiffsrumpf als Kathode.
  • Eine in der Konfiguration eingebaute Kupferanode erzeugt eine Elektrolyse zwischen Anode und Kathode.

Die Elektrolyse kann durch Ballastwasser-Behandlungssysteme (Elektrolyse und UV-Anlagen), Korrosionsprozesse oder elektrische Potentialunterschiede zwischen verschiedenen Materialien auftreten.

AUSWIRKUNG DER ELEKTROLYSE AUF DEN PIEZO-WIDERSTANDSWANDLER

  • Ein Ergebnis der Elektrolyse sind positive Wasserstoff-Ionen
  • Aufgrund ihrer Polarisation bewegen sich die Wasserstoffionen in Richtung der Kathode (Tankgehäuse oder Schiffsrumpf), an der der Messwertaufnehmer installiert ist.
  • Bei direktem Kontakt zwischen Tank und Schallwandler dringen die Wasserstoffionen durch das dünnste Bauteil der Anode, nämlich das Diaphragma des Schallwandlers.
  • Nach dem Durchdringen der Wasserstoffionen durch die Membran nehmen die Wasserstoffionen ein Elektron auf und wandeln sich in molekularen Wasserstoff (H2) um. Der Wasserstoff reichert sich in der Füllflüssigkeit des Messwertaufnehmers an.
  • Hält dieser Effekt über einen längeren Zeitraum an, steigt die Wasserstoffkonzentration in der Füllflüssigkeit an und die Membran wird aufgebläht, wodurch der Sensor driftet und einen falschen Wert ausgibt.

FESTSTELLUNGEN

Drucktransmitter aus Edelstahl, die seit 2-3 Jahren in Ballasttanks von Schiffen eingesetzt werden, wurden analysiert und die Untersuchungen ergaben folgende Ergebnisse:

Für diese Anwendung sollte der Sensor aus einem korrosionsbeständigeren Material wie Titan bestehen.
Durch die Verwendung von Titan verhindern wir auch die durch Chlor verursachte Spaltkorrosion.

EMPFEHLUNG

Nach diesen Erkenntnissen setzt die STS Sensor Technik Sirnach AG seit über 10 Jahren erfolgreich piezoresistive, elastomerfreie Sensoren mit Gehäuse und Membran aus Titan für Anwendungen im Marine-, Brackwasser- und Meerwasserbereich ein.

Mehr Informationen zur Anwendung

Mehr Informationen zum Produkt

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!