Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Automobil Archives - STS Deutschland
Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Druckmessung von Treibstoffen – Die Materialauswahl entscheidet

Druckmessung von Treibstoffen – Die Materialauswahl entscheidet

Aggressive Medien stellen eine besondere Herausforderung für die eingesetzte Druckmesstechnik dar. Daher braucht es Sensoren, die sich flexibel an die jeweiligen Anforderungen anpassen lassen. Mit der Produktfamilie ATM.1ST sind Sie auf der sicheren Seite.

Eine wesentliche Produkteigenschaft von Drucktransmittern ist der modulare Aufbau. Eine Vielzahl an mechanischen und elektrischen Komponenten können anwendungspezifisch zusammengestellt werden, um:

  1. optimal auf die Anwendung abgestimmte Drucktransmitter zu erhalten, und
  2. eine schnelle Umsetzung des Messaufbaus zu gewährleisten.

Abbildung 1:  Aufbau eines Drucksensors mit O-Ring Messzelle

Grundlage dafür sind hochwertige Messzellen auf piezoresistiver Basis, welche mittels O-Ringen abgedichtet werden. Diese Bauweise erlaubt eine Vielzahl an Kombinationen. Je nach Einsatz im Druckmedium werden unterschiedliche O-Ring Werkstoffe (Viton, EPDM oder Kalrez) eingesetzt, um die Drucksensoren auf die jeweilige Applikation optimal anzupassen.

Abbildung 2: Beispiel einer metallisch dichtenden Druckmesszelle

Für den Einsatz in agressiven Medien wie beispielsweise Kraftstoffen (Diesel, Benzin, …) oder in Hochdruckanwendungen ist eine Dichtung mit O-Ring jedoch ungeeignet. In solchen Umgebungen muss die Messzelle mit dem Druckanschluss zusammen verschweisst werden. Deshalb wurde für Anwendungen in Treibstoffen eine elastomerfreie, metallisch dichtende Variante entwickelt: Die ATM.1ST Produktfamilie.

Die  elastomerfreien (metallisch dichtende) Versionen können in den verschiedensten mechanischen Ausführungen angeboten werden. In der Genauigkeitsklasse 0.05% FS ist der Drucktransmitter in Nenndruckbereichen von 0…20  bar  bis 0…100 bar und mit Ausgangssignal 4 – 20 mA verfügbar.

In der Genauigkeitsklasse 0.1% werden die Drucksensoren in Nenndruckbereichen von 0…20 bar bis 0…700 bar und in der Version 4-20 mA oder 0 – 5/10 V angeboten.

Die Analogtransmitter sind in zwei Temperaturbereichen, -25…125°C (Standard) oder  -40…125°C (optional), abgeglichen. Über beide Temperaturbereiche wird ein Gesamtfehlerband von < 0.4%FS garantiert.

Mit der kurzen Bauform, dem robusten Gehäuse und der sehr hohen Flexibilität erlaubt die ATM.1ST Produktfamilie Anwendern, die Drucksensoren entsprechend der jeweiligen Anforderungen zu konfigurieren. Egal ob Druckanschluss oder elektrischer Anschluss: Es besteht eine grosse Bandbreite an Möglichkeiten für den mechanischen Aufbau.

Mit diesen überzeugenden technischen Eckdaten  sind die Drucksensoren für unterschiedliche Einsatzbereiche in der Messtechnik, dem Anlagen- und Maschinenbau sowie der Ausrüstung von Prüfständen oder Kalibrieranlagen bestens geeignet.

Druckmessung von Treibstoffen – Die Materialauswahl entscheidet

Mit effizienter Druckmesstechnik Schadstoffemissionen minimieren

Rückrufaktionen in der Automobilindustrie haben umfangreiche Folgen. Hersteller müssen neben hohen Kosten mit einem immensen Imageverlust rechnen. Autobesitzer reagieren verärgert und verunsichert. Besonders grosse Wellen hat der Skandal um manipulierte Abgaswerte im letzten Jahr geschlagen. Die Politik hat reagiert und neue Testverfahren angekündigt.

Eine wahre Rückruf-Krise hat die Automobilindustrie in den vergangenen zwei Jahren erfasst. Allein in den USA wurden 51 Millionen Autos durch die National Highway Traffic Safety Administration (NHTSA) 2015 zum Rückruf beordert. Das sind weitaus mehr als im selben Jahr verkauft wurden, auch wenn nicht alle dieser zurückgerufenen Fahrzeuge im Zusammenhang mit manipulierten Abgaswerten stehen. Allein auf den „Dieselgate“ Skandal des Herstellers Volkswagen fallen 11 Millionen Autos. Der Schaden ist enorm.

Kostendruck und die zunehmende Komplexität der in den Autos verbauten Systeme werden für die erhöhte Fehleranfälligkeit und der damit verbundenen Rückrufaktionen in Zusammenhang gebracht. Dieser Herausforderung ist in erster Linie mit verbesserten, noch zuverlässigeren Kontrollsystemen beizukommen – sowohl auf Seiten der Hersteller und Zulieferer als auch durch staatliche Kontrollinstanzen, die die Einhaltung vorgeschriebener Normen überprüfen. Es braucht hochwertige Messmittel, die unter unterschiedlichen Bedingungen genaueste Ergebnisse liefern und somit eine optimale (Nach-) Qualifizierung sichern. Hier hat sich ein grosser Nachholbedarf offenbart.

Beste Druckmesstechnik für beste Verbrennungsmotoren

Bei der Entwicklung von Verbrennungsmotoren braucht es hochpräzise Drucksensoren, welche bei der Verbrennungsanalyse die exakte Messung der Zylinderdrücke sowie der Ansaug- und Abgasdrücke ermöglichen. Ebenso hochwertig müssen die Absolutdrucksensoren (Gaswechsel) und Hochdrucksensoren (Einspritzdruckmessung) sein, schliesslich ist gerade bei Letzteren das Potential für eine Schadstoffminimierung enorm. So können bei Benzinern auch durch die Erhöhung des Einspritzdrucks Partikel reduziert werden. Einige Zulieferer arbeiten ja bereits daran, den Einspritzdruck auf 350 bar oder mehr zu erhöhen.

Die mobile Emissionsmessung kommt

Bei der Abgas- und Verbrauchsmessung durch staatliche Zulassungsbehörden wird aktuell der standardisierte „Neue Europäische Fahrzyklus (NEFZ)“ eingesetzt. Wie sich gezeigt hat, gibt die Testprozedur Herstellern allerlei Freiräume, die Messungen zu ihrem Vorteil zu beeinflussen, da das Fahrzeug nicht unter realen Bedingungen, sondern allein am Prüfstand untersucht wird.

Nach Bekanntwerden der Manipulationen beschloss der Fachausschuss der Europäischen Union im Mai 2015, dass Emissionen bei der Typgenehmigung ab Herbst 2017 im praktischen Fahrbetrieb geprüft werden sollen – bekannt als Real Driving Emissions (RDE). Die Laborbedingungen herkömmlicher Kontrollen werden so durch ein Verfahren ergänzt, das die Verwendung von Abschaltvorrichtungen während des Tests verhindert. Das zu prüfende Fahrzeug wird auf freier Strecke untersucht und ist somit schwankender Bedingungen ausgesetzt. Darüber hinaus wird zufällig abgebremst und beschleunigt.

Neue Herausforderungen meistern – mit modularen Druck-Sensorik-Lösungen

Das RDE-Verfahren stellt selbstverständlich auch besondere Herausforderungen an die eingesetzte Messtechnik. Bei der Optimierung der Emissionswerte von Verbrennungsmotoren kommen in erster Linie Absolut- und Relativdruckmessung zum Einsatz. In Anbetracht der neuen Messmethoden müssen diese zuverlässig über einen weiten Temperaturbereich arbeiten. Ob im tiefsten Winter oder im Hochsommer: Die Messwerte müssen absolut zuverlässig sein, um ein realistisches Bild der tatsächlichen Abgaswerte geben zu können. Darüber hinaus zeigt sich, dass die Arbeit mit höheren Drücken signifikante Einsparungen erzielen kann. Deshalb sollten auch hohe Drücke abgebildet werden können. Dass die eingesetzte Messtechnik in mobilen Anwendungen störungssicher arbeitet, versteht sich angesichts der neuen Methoden von selbst.

Mit Standard-Lösungen lässt sich das nicht leisten. Vielmehr sind sie Teil des Problems. Individuelle Herausforderungen fordern individuelle Lösungen. Zudem braucht es Instrumente, die sowohl präzise als auch flexibel sind, um in verschiedenen Anwendungen zuverlässig zu arbeiten. Nur so können Wirtschaftlichkeit und Genauigkeiten in Einklang gebracht werden. Es zeigt sich, dass modulare Systeme in diesem Zusammenhang ideal sind. In Abstimmung mit dem Hersteller können sie an die Erfordernisse angepasst werden und somit verlässliche Ergebnisse liefern. Das ist besonders bei der Entwicklung neuer Motoren ein Pluspunkt, da Anpassungen unkompliziert und zeitnah vorgenommen werden können.

Eine Erfahrung, die unsere Kunden täglich machen – seit mittlerweile fast 30 Jahren. Als führender Hersteller von kundenspezifischen, modularen Messsystemenkönnen wir in kurzer Zeit und in kompetenter Zusammenarbeit mit den Herstellern passgenaue Messlösungen bereitstellen. Der Entwicklung neuer kraftstoffeffizienter Motoren sowie deren Überprüfung in der Praxis steht aus messtechnischer Sicht somit nichts mehr im Weg.

Miniaturisierung, Leistungssteigerung, Verbrauchsreduktion: Mobile Klimatechnik mit Kohlendioxid

Miniaturisierung, Leistungssteigerung, Verbrauchsreduktion: Mobile Klimatechnik mit Kohlendioxid

Kohlendioxid ist schon seit über 150 Jahren als Kältemittel bekannt. Dass es erst jetzt Einzug in die mobile Klimatechnik hält, liegt am vom Gesetzgeber ausgeübten Druck zur Reduzierung der Treibhausgase sowie an besseren technischen Möglichkeiten. Dabei spielt die Druckmessung eine zentrale Rolle.

Fluorierte Treibhausgase mit einem Treibhauspotential über 150 in Autoklimaanalgen sind seit Januar 2011 durch eine EU-Richtlinie verboten. Damit muss das bis dahin gebräuchliche Kältemittel Tetrafluotan (R134a) ersetzt werden. Da CO2 das Klima 1.430-mal weniger schädigt als R134a, bot es sich dank seiner hohen Kälteleistung und guter chemischer Eigenschaften als Alternative an.

Die Argumente für CO2 als Kältemittel sind nicht von der Hand zu weisen:

  • Als natürlich vorkommender Stoff ist es weltweit unbegrenzt und kostengünstig verfügbar.
  • Es ist weitaus weniger schädlich als andere Kühlmittel wie R134a, R404A, R407C und andere.
  • Als Nebenprodukt industrieller Prozesse muss es nicht aufwendig hergestellt werden.
  • Im Gegensatz zu anderen neuen Kühlmitteln ist es toxikologisch sehr gut erforscht.
  • Es ist weder giftig noch brennbar und stellt somit ein geringeres Gefährdungsrisiko dar als andere Mittel.
  • Es ist mit allen gängigen Werkstoffen verträglich.
  • Es weist eine sehr hohe volumetrische Kälteleistung auf und ist auch für Wärmepumpen geeignet.

Der Wechsel von R134a zu R744 (unter dieser Abkürzung wird CO2 als Kältemittel geführt) kann allerdings nicht ohne Weiteres vollzogen werden. Den mannigfaltigen Vorteilen stehen auch einige Nachteile gegenüber, die allerdings lediglich die Konstruktion der mobilen Klimaanlagen in Fahrzeugen betreffen: Eine sehr hohe Drucklage und die niedrige kritische Temperatur von 31°C sind hier herauszustellen. Die Hinwendung zu R744 musste daher zwangsläufig einen Umweg über die Prüfstände der Hersteller und ihrer Zulieferer machen.

Klimatechnik mit CO2 – So funktioniert es

Die Funktionsweise einer herkömmlichen Klimaanlage beginnt natürlich mit dem Betätigen des AC-Schalters im Fahrzeugraum. Die Magnetkupplung am Kompressor wird in der Folge mit Spannung versorgt (bei neueren Kompressoren entfällt die Magnetkupplung, der Druck wird über den Kolbenhub intern geregelt). Es wird eine Verbindung zwischen Riemenscheibe und Kompressorwelle hergestellt. Der Verdichter saugt nun das gasförmige Kältemittel an. Es wird nun verdichtet und in die Hochdruckleitung gepresst. Damit steigt allerdings auch die Temperatur des Kühlmittels. Der in der Fahrzeugfront verbaute Kondensator ist dafür zuständig, die Temperatur wieder zu senken. Dabei wechselt das Kühlmittel den Aggregatzustand von gasförmig zu flüssig. Das nun flüssige Kühlmittel wird weiter zur Trocknerflasche weitergeleitet, wo ihm Feuchtigkeit entzogen wird. Das Kältemittel wird im Anschluss durch das Expansionsventil geführt. Nach dieser Engstelle wechselt das Kühlmittel erneut den Aggregatzustand im dahinter liegenden Verdampfer. Die für diesen Wechsel benötigte Energie wird dabei der Umgebungsluft entzogen: Die Temperatur im Fahrinnenraum kühlt sich ab. Das gasförmige Kühlmittel kann jetzt wieder vom Kompressor angesaugt werden. Der Kreislauf beginnt erneut.

Dieses Kühlprinzip bleibt auch bei der Verwendung von R744 erhalten. Allerdings ändern sich die technischen Rahmenbedingungen etwas. Kohlendioxid stellt aufgrund seiner Eigenschaften andere Anforderungen an das System hinsichtlich Druck und Temperatur.

Im Vergleich zu einem herkömmlichen mobilen Kühlsystem stellt der zusätzliche innere Wärmetauscher den grössten Unterschied dar. Dieser ist nötig, weil Kälteanlagen mit CO2 mit überkritischer Wärmeabgabe oberhalb von 31°C arbeiten. Der Kühlkreislauf läuft wie folgt ab: Das Gas wird im Kompressor auf einen überkritischen Druck verdichtet. Von dort gelangt das Gas in einen Gaskühler, der im Vergleich zum herkömmlichen System die Rolle des Kondensators übernimmt. Hier wird das Gas abgekühlt. Eine Kondensation findet dabei nicht statt. Im darauf folgenden Wärmetauscher kommt es zu einer weiteren Abkühlung. Im nächsten Schritt wird das CO2 durch das Expanionsventil gepresst. Die Expansion führt das Gas in den Nassdampfbereich. Dieser Nassdampfanteil wird im Anschluss im Verdampfer verdampft – die Kühlwirkung tritt ein.

Abgesehen vom inneren Wärmetauscher und dem Gaskühler, der an die Stelle des Kondensators tritt, stellt der hohe Druck, mit dem das System arbeitet, den grössten Unterschied zu vorherigen mobilen Kühlsystem dar. Die Anforderungen an die Festigkeit aller verwendeten Bauteile steigt mit dem Druck im System. Dieser hohe Druck wirkt sich besonders auf die Konstruktion des Kompressors aus, der dadurch neu konzipiert werden muss.

Hohe Drücke erfordern leistungsstarke Messtechnik

Ein zentraler Aspekt bei der Konstruktion neuer Kompressoren stellt die sehr geringe Molekülgrösse von CO2 dar, da es schnell durch die herkömmlichen Dichtungsmaterialien diffundiert. Es braucht also eine neu konzipierte Wellenabdichtung, um einen Kälteverlust zu verhindern. Die Dichtung muss den chemischen Eigenschaften des Kühlmittels gewachsen sein und den hohen Drücken im Kompressor im Dauerbetrieb standhalten können – was in Langzeittests am Prüfstand sicherzustellen ist.

Auch das Kompressorgehäuse selbst kann nicht einfach von herkömmlichen Kühlsystemen übernommen werden. Um langfristig effizient zu arbeiten, muss es hohen Temperaturen standhalten. Die stark schwankenden Saugdrücke, die massgeblich auch die Triebraumdrücke beeinflussen, stellen ebenso eine Herausforderung dar. Auf der Hochdruckseite sind Maximaldrücke von 200 bar möglich. Aufgrund dieser Eigenschaften würde es bei herkömmlichen Kompressoren viel schneller zu Undichtigkeiten kommen als bei der Verwendung von R134a. Da heute aber eine viel genauere Fertigung der Teile als vor einigen Jahren möglich ist, kann diesem Problem beigekommen werden. Demnach ist eine konstante Überwachung der Drücke beim Prototypenbau unabdingbar.

Der hohe Druck, der bei Klimasystemen mit CO2 aufkommt, hat abgesehen von den guten Umwelteigenschaften und der im Vergleich zu R134a besseren Kälteleistung weitere Vorteile: Aufgrund der höheren Dichte von CO2 verringert sich der benötigte Bauraum bei gleicher oder gar besserer Kühlleistung gegenüber R134a. Man braucht für die gleiche Kälteleistung lediglich 13 Prozent des Volumenstroms eines R134a Kältemittelverdichters.

Die Verringerung der Grösse verstärkt auch den Ruf nach immer kleinerer Druckmesstechnik. Drucksensoren auf piezoresistiver Basis bieten sich aufgrund der Miniaturisierungsmöglichkeiten hier an, weil sie im Niedrigdruckbereich hochpräzise arbeiten und selbst bei hohen Drücken genaue Ergebnisse liefern – insbesondere bei Langzeittests. Die Drucktransmitter von STS auf piezoresistiver Basis bieten Herstellern bei der Entwicklung neuer Modelle darüber hinaus den entscheidenden Vorteil, dass die Instrumente dank ihres modularen Aufbaus schnell an neue Anforderungen unkompliziert anzupassen sind.

Turbomotoren: Die Vermessung des Ladedrucks ist der Schlüssel zum Erfolg

Turbomotoren: Die Vermessung des Ladedrucks ist der Schlüssel zum Erfolg

Um den immer schärferen gesetzlichen Abgasreglungen weltweit Herr zu werden, setzen OEMs verstärkt auf immer kleinere Ottomotoren. Diese immer kleineren Motoren verbrauchen weniger Treibstoff und stossen weitaus weniger Emissionen aus. Allerdings benötigen sie eine Motoraufladung, eine Methode der Effizienzsteigerung von Verbrennungsmotoren durch Luftzuführung mit erhöhtem Druck, um Verbrauchern die Leistung zu bieten, die sie von modernen Fahrzeugen kennen

Das Fahrgefühl diese kleineren Turbomotoren muss dem der grösseren, freisaugenden Gegenstücken mindestens ebenbürtig sein. Dafür braucht es den vollen Antriebsdruck bei niedriger Motorendrehzahl. Gleichzeitig soll ein Kraftverlust bei voller Geschwindigkeit vermieden werden. Das gelingt nur mit einem hochentwickelten Ladedruckregelsystem.

Eine der hauptsächlichen Herausforderungen ist dabei die präzise Regelung des Luft-Treibstoff-Verhältnisses nahe am stöchiometrischen Wert bei unterschiedlichen Ladedrücken.

Druckregelung mit turbinenseitigen Bypass

Die Regelung des turbinenseitigen Bypasses ist die einfachste Form der Ladedrucküberwachung.

Sobald ein spezifischer Ladedruck erreicht ist, wird ein Teil des Abgasstroms mittels eines Bypasses um die Turbine herum geleitet. Eine federbelastete Membran steuert für gewöhnlich das Ladedruckregelventil an, das den Bypass in Abhängigkeit vom Ladedruck öffnet und schliesst.

Druckregelung mit variable Turbinengeometrie

Zur Steuerung des Ladedrucks haben Hersteller in jüngerer Vergangenheit auf variable Turbinengeometrie zurückgegriffen. Diese Herangehensweise ermöglicht es, den Strömungsquerschnitt der Turbine den Betriebsparametern des Motors entsprechend anzupassen.

Bei niedrigen Drehzahlen wird der Strömungsquerschnitt durch das Verschliessen der Leitschaufeln verringert. Der Ladedruck und somit auch der Drehmoment der Motoren wird infolge des grösseren Druckabfalls zwischen Turbinenein- und -austritt vergrössert. Bei der Beschleunigung von niedrigen Drehzahlen öffnen sich die Zugänge und passen sich den korrespondierenden Motoranforderungen an.

Durch die Regulierung des Strömungsquerschnitts der Turbine für den jeweiligen Betriebspunkt kann die Abgasenergie und somit auch die Effizienz des Turboladers optimiert werden. Die Effizienz des Motors wird dank dieser Methode im Vergleich zur Bypass-Steuerung weiter gesteigert.

Elektronische Ladedruckregelsysteme

Inzwischen werden meist elektronische Ladedruckregelsysteme in modernen Ottomotoren eingesetzt. Verglichen mit der rein pneumatischen Regelung, die nur als Begrenzung des Volllastdruckes wirken kann, ermöglicht eine flexible Ladedruckregelung die Einstellung des optimalen Ladedruckes bei Teillast.

Der Betrieb der Klappen (oder Ventile) ist einem modulierten Regeldruck anstelle eines vollen Ladedrucks unterworfen und kann in Abhängigkeit von verschiedenen Parametern wie Ladelufttemperatur, Zündpunktverstellung und Kraftstoffqualität eingestellt werden.

Simulation reduziert Produktionszeit und Entwicklungskosten

In Anbetracht der Fülle an komplexen Variablen setzen die Hersteller während der Entwurfs- und Testphase auf Simulationen.

Eine weitere Hürde, die es es zu nehmen gilt, ist der enge Bereich, indem der Zentrifugalkompressor bei hohen Ladedrücken stabil arbeiten muss.

Weitreichende Versuche unter realen Bedingungen sind die einzige Möglichkeit, ein wirksames Simulationsmodell zu entwickeln. Die Versuche werden hauptsächlich an Motorprüfständen in Klimakammern durchgeführt.

Bei den offenen und zum Teil gedrosselten Testläufen werden die folgenden Druckinformationen aufgezeichnet:

  • Saugrohrdruck
  • Ladedruck
  • Luftdruck

Um ein klares Bild der Motorleistung über den kompletten Motordrehzahlbereich zu erhalten, laufen die Tests unter Berücksichtigung der Motortemperaturen ab (Kühlmittel und Öl).

Während des Testdurchlaufs ist es wichtig, dass die Ingenieure jede Leistungsabweichung aufzeichnen. Vorkommnisse wie Abgaspulsationen, die bei bestimmten Motordrehzahlen zu stehenden Wellen führen können und das Laufrad bei kritischen Frequenzen anregen können, vermindern die Lebenszeit des Turbos oder führen gar zu katastrophalen Ausfällen.

Daher ist die Messung der Druckleistung des Kompressors und der Turbine entscheidend für die Entwicklung eines akkuraten Extrapolationsmodells zur Implementierung während der Simulation.

Ein gut entwickeltes Simulationsmodell spart Entwicklern Zeit und Geld bei Prüfstand- und Strassentests. Voraussetzung hierfür sind jedoch ausführliche Aufzeichnungen zu den auftretenden Drücken.

Drucksensoren im Motorsport: Wenn der Bruchteil einer Pferdestärke entscheidet

Drucksensoren im Motorsport: Wenn der Bruchteil einer Pferdestärke entscheidet

„The winner takes it all!“ Im Rennsport teilt sich die Welt in Sieger und Verlierer. Der erfolgreiche Fahrer geniesst die Champagner-Dusche. Doch die Vorentscheidung fällt am Teststand der Motorenentwickler. Leistungsstarke Drucksensoren sind der entscheidende Wettbewerbsvorteil.

STS liefert Drucksensoren an Kunden aus der Motorsportwelt, darunter Vertreter aus Formel 1 und NASCAR. Beide Rennserien haben trotz aller Unterschiede eines gemeinsam: Jede Pferdestärke zählt und stellt auf der Strecke den entscheidenden Vorteil dar. Wenn in aufwendigen Tests an Prüfständen um jedes Zehntel einer Pferdestärke gerungen wird, müssen die Testergebnisse bis auf die letzte Dezimalstelle absolut zuverlässig sein.

Druckmesstechnik bei der Motorentwicklung in der Formel 1

Das aktuelle Motorenreglement der Formel 1 wurde 2014 eingeführt. Es werden V-Motoren mit 6 Zylindern, 1,6 Litern Hubraum und Mono-Turbolader gefahren. Die Drehzahlen belaufen sich auf 15.000 min−1. Das Kinetic Energy Recovery System (KERS), ein seit 2009 eingesetztes elektrisches System zur Bremsenergierückgewinnung, wurde durch das Energy Recovery System (ERS) ersetzt. Bei modernen Formel 1 Motoren handelt es sich also um Hybridmotoren. Damit ist die Zukunft in der Formel 1 längst Gegenwart geworden. Die vielleicht weltweit erfolgreichste Rennserie ist auch ein Versuchslabor für die Strasse. Ob Scheibenbremsen oder Computer-Diagnose, viele Technologien, die zum Alltag des Strassenverkehrs gehören, haben ihren Ursprung in den Entwicklungsschmieden der Formel 1.

Das geltende Motorenreglement, das den Rahmen für alle Teams gleichermassen absteckt, macht die ausgiebige Tüftelei am Prüfstand notwendig, um den entscheidenden Vorteil herauszuarbeiten. Jede Pferdestärke zählt. Im Vergleich zu Tests für Fahrzeuge im normalen Strassenverkehr gelten zum Teil andere Anforderungen. Öl- und Wasserdruck sind höher, ebenso wie die auftretenden Temperaturen. Wenn es darum geht, den Verbrauch zu senken und die Leistung zu steigern, sind umfassende Tests unter Rennbedingungen nötig. Drüber hinaus ist die Genauigkeit der Messergebnisse über den geforderten Temperaturbereich von grösserer Bedeutung. In der Formel 1 geht es oft nicht um grosse Sprünge bezüglich der Pferdestärken – schon Verbesserungen im Dezimalbereich sind auf diesem hohen Leistungsniveau Grund zur Freude.

Angesichts dieser Herausforderungen kam ein bekannter Formel 1 Rennstall auf STS zu, da die bis dahin verwendete Sensortechnik den hohen Ansprüchen nicht gerecht wurde. Die eingesetzten Messinstrumente waren zu gross und zu schwer. Noch schwerwiegender war allerdings das Problem, dass zusätzliche Kühltechnik im Prüfstand verbaut werden musste, da andernfalls die Sensortemperatur schnell über das Maximum schnellte. Die Messergebnisse wären somit ohne Wert gewesen.

Ziel des Entwicklers war es also, Drucksensoren zu erhalten, die eine Standardisierung ermöglichen und zusätzliche Kühlelemente obsolet machen. Auch die Themen Gewicht und Grösse spielten eine Rolle – schliesslich beeinflussen diese Faktoren die Performance des Boliden.

STS stellte dem Rennstall den neuen ATM.mini zur Verfügung. Dieser punktet nicht nur mit der geforderten Präzision über den geforderten Temperaturbereich, sondern brachte auch einen weiteren entscheidenden Vorteil, der die Motorenentwicklung nachhaltig optimieren konnte: Unter den bisher verwendeten Sensoren eines anderen Herstellers kam es zur Störungen beim Umschalten auf das seit 2014 verwendete Hybridsystem. Die Folge: Der Prüfstand schaltet sich ab. Langzeitmessungen werden praktisch unmöglich. Die ATM-Sensoren aus dem Hause STS sind störungssicher und ermöglichen somit umfangreiche Tests auf dem Weg aufs Siegertreppchen.

Druckmesstechnik bei der Motorentwicklung bei NASCAR

Zwar sind in den Stock Cars der NASCAR keine Hybridmotoren verbaut, dennoch braucht es umfangreiche Tests, um das Optimum an Leistung zu erreichen. Auch hier setzt ein bekannter Motorenhersteller auf die Druckmesstechnik von STS. Bei den umfangreichen Tests halten in etwa 200 ATM.1ST Druck Transmitter Öl-, Wasser-, Benzin- und Luftdruck im Blick. Von den im Motor eintreffenden Luftdrücken bis hin zur Verbesserung des Ölflusses gilt es, verschiedene Faktoren genau zu untersuchen, um kleinste Leistungssteigerungen zu erzielen (wir bewegen uns hier bei zirka 900 PS). Wie bei der Formel 1 ist höchste Präzision gefordert. Hier geht es um ein Zehntel einer Pferdestärke!

Die Wahl des Herstellers fiel auf den Drucktransmitter ATM.1ST, weil er in Bezug auf die geforderten Leistungsmerkmale weitestgehend konkurrenzlos ist:

  • Die Modularität der STS Sensoren erlaubt es dem Hersteller, einen speziellen Druckadapter anzuschliessen.
  • Der Gesamtfehler von ≤ ± 0.30 % FS ermöglicht aussagekräftige Analysen zur Verbesserung der Motorleistung.
  • Die Langzeitstabilität minimiert den Kalibierungsaufwand erheblich.
  • Der Druckmessbereich von 100 mbar…1000 bar wird den auftretenden Drücken bei der Motorenentwicklung gerecht.
  • Die hervorragende Temperaturkompensation ermöglich präzise Ergebnisse über einen weiten Temperaturbereich – ein entscheidendes Kriterium bei den rasant ansteigenden Temperaturen während Leistungstests auf höchstem Niveau.

Ob Formel 1 oder NASCAR: Der Weg aufs Siegertreppchen führt über die Prüfstände. Besonders im leistungsstarken Motorsportbereich braucht es dafür Hochpräzisionssensoren, die alle wichtigen Grössen, von Öl- und Wasser- bis Treibstoff- und Luftdruck alles im Blick haben. Neben der Präzision spielt dabei auch die Störungssicherheit eine wichtige Rolle, um die notwendigen Langzeittests mit zuverlässigen Ergebnissen durchführen zu können.

GDI-Motoren: Unter Druck Emissionen minimieren und Leistung erhöhen

GDI-Motoren: Unter Druck Emissionen minimieren und Leistung erhöhen

Es wird damit gerechnet, dass bis 2025 zirka 40 Millionen Motoren mit Benzindirekteinspritzung verkauft werden. Unter diesem Aspekt ist es erstaunlich, dass diese Motoren mehr gefährliche Feinstaubpartikel als Motoren mit Vorkammereinspritzung oder gar die neusten Diesel mit Partikelfilter ausstossen.

Die potentiell steigenden Marktanteile bedeuten, dass GDI Feinstaubemissionen – auch wenn sie vergleichsweise gering gegenüber ungefilterten Dieseln sind – jetzt stärker von Herstellern und Aufsichtsbehörden unter die Lupe genommen werden.

Um diese Emissionen zu reduzieren und dabei die Leistung zu verbessern, erforschen Ingenieure aktuell neue Designs und Konzepte, darunter die Erhöhung des Benzindrucks, alternative Kraftstoffe und Systeme zur Emissionsverminderung.

Nach Meinung von Matti Maricq, seines Zeichens technischer Leiter der Abteilung „Chemical Engineering and Emissions after Treatment“ des Research and Innovation Center von Ford in Dearborn, wird durch die direkte Einspritzung des Kraftstoffs in den Zylinder eine sauber brennende Explosion erzeugt, die nur wenig Treibstoff verschwendet und mehr Leistung freisetzt.

Während dieses Vorgangs wird Benzin direkt dort zugeführt, wo die Verbrennungskammer am heissesten ist. Damit wird eine gründlichere, gleichmässigere und schonendere Verbrennung möglich.

Sauber brennende GDI-Motoren stossen gefährliche Partikel aus

Aufgrund der unvollständigen Brennstoffverflüchtigung, teilweise brennstoffreichen Zonen sowie der „Befeuchtung“ von Kolben und Zylinderoberflächen, produzieren GDI-Motoren allerdings unerwünschte Feinstaubpartikel. Die meisten Emissionen treten üblicherweise während des Kaltstarts und in Hochlast-Übergangssituationen während der Aufwärmphase auf. Das kann allerdings je nach Last, Fahrzyklusphase und Fahreranspruch variieren.

Obwohl „grüne“ Kritiker nach wie vor skeptisch gegenüber sogenannten „Engine Management“-Methoden sind, da sie diese gegenüber Abgasfiltern als unzuverlässig empfinden, erwarten die meisten OEMs und Komponentenzulieferer, dass sich technische Änderungen und verbesserte Designs letztlich als kosteneffizienter und ebenso zuverlässig herausstellen.

Der aktuelle Entwicklungsstand deutet an, dass höhere Brennstoffdrücke, möglicherweise in der Nähe von 40MPa, zusammen mit neuen hochpräzisen Einspritzern zukünftige GDI-Systeme stark verbessern werden. Um das System weiter zu optimieren, werden Ingenieure am Einspritzer die Aspekte Timing, Zielgenauigkeit, Messen und Atomisierung weiter verfeinern.

In einer kürzlich von SAE veröffentlichten Studie wurde festgehalten, dass eine Erhöhung des Kraftstoffsystemdrucks die Homogenität der Mischung verbessert und die Diffusionsflamme reduziert. Somit werden Feinstaubemissionen unter homogener Verbrennung in GDI-Motoren signifikant verringert.

Des Weiteren wurde als ein Ergebnis der verbesserten Einlassladungsbewegung bei Kraftstoffdrücken zwischen 20 MPa bis 40 MPa eine weitere Verminderung der Feinstaubemissionen erreicht.

Die Verbrennungsdaten zeigen, dass eine Steigerung des Kraftstoffdrucks grossen Einfluss auf die Reduzierung von Verbrennungsemissionen hat und den Kraftstoffverbrauch optimiert.

Akkurate Messung des Brennstoffdrucks

Dennoch: Damit ein GDI-System optimal arbeitet, ist es wichtig, dass während der Design- und Testphase der Brennstoffdruck in dem Common Rail (CR) korrekt gemessen wird, damit das ECU entsprechend abgebildet werden kann.

Die Messung des CR Kraftstoffdrucks ist der Schlüssel zu niedrigeren Feinstaubemissionen. Der direkte Einspritzdruck wird mit Sensoren gemessen und die Signale werden genutzt, um die Pumpendrehzahl und/oder das Volumen zu bestimmen.

Die meisten Direkteinspritzsysteme verwenden piezoresistive Drucksensoren auf der Niederdruckseite des Systems. Wenn Druck ausgeübt wird, erzeugt das Silikonchipelement eine messbare elektrische Spannung. Sie nimmt zu, wenn der Druck steigt.

Auf der Hochdruckseite nutzen Sensoren gewöhnlich eine Metallmembran auf einer Widerstandsbrücke. Wenn Druck ausgeübt wird, erzeugt die Brücke eine Widerstandsänderung, die sich in einer Änderung der angelegten Spannung äussert. Das elektronische Steuermodul wandelt die Spannung in einen berechneten Druck um – gewöhnlich mit einer Genauigkeit von ± 2%.

Um den richtigen Druck aufrechtzuerhalten, pulsiert das elektronische Steuermodul die Niederdruckpumpe. Das System weist typischerweise einen Regler und keine Rückleitungen auf. Einige Systeme haben sogar integrierte Temperatursensoren in den Leitungen, die verwendet werden, um die Dichte des Kraftstoffs zu berechnen, so dass die Kraftstoffverkleidung auf die Energiemenge im Kraftstoff abgestimmt werden kann.

Um eine genaue Messung des Leitungsdrucks sicherzustellen, ist es wichtig, hochpräzise Drucktransmitter zu verwenden, um den CR-Druck unter sämtlichen Motor- und Lastbedingungen abzubilden. Jeder Fehler während dieses Prozesses kann zu einer inkorrekten Modulation des CR-Drucks führen. Das Resultat sind schwerwiegende Abweichungen.

Mit der Einführung des harmonisierten Fahrzyklus stehen OEMs unter erneutem Druck, die von Behörden anvisierten Emissionswerte einzuhalten. Die GDI-Ottomotoren werden an vorderster Front einer neuen Generation grüner Technologien stehen. Dennoch, damit diese Technologie zukünftigen Regulierungen auch entspricht, müssen Feinstaubemissionen reduziert werden – zum grössten Teil durch die genaue Überprüfung des CR-Kraftstoffdrucks.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!