Mit kontinuierlicher Druckmessung das Gasniederdrucknetz im Blick

Mit kontinuierlicher Druckmessung das Gasniederdrucknetz im Blick

Der autarke Prozesswächter der Firma AIRVALVE arbeitet mit Drucksensoren von STS zur Überwachung neuralgischer Punkte des Gasnetzes der SWK Netze GmbH. Das schafft Planungssicherheit bei vergleichsweise geringem Implementierungsaufwand.

Die SWK Netze GmbH führt zur Kalibrierung ihres Rohrnetzprogramms umfangreiche Messungen im Gasniederdrucknetz durch. Zu diesem Zwecke sollten im Rahmen des Projektes „Netzmonitoring im Gasniederdrucknetz“ kontinuierliche Druckmessungen an fünfzehn neuralgischen Punkten durchgeführt werden. Neben Erwartungen an möglichst präzisen Messwerten war bei der Realisierung des Projektes auch entscheidend, dass die Messinstrumente sowohl zuverlässig über einen langen Zeitraum arbeiten und gleichzeitig über eine ausreichend hohe Signalstärke verfügen, um auch im Unterflureinbau regelmässig Messwerte übertragen zu können. Um Tief- und Rohrbauarbeiten auf ein absolutes Minimum zu reduzieren, sollte der Druck an bereits bestehenden Lüftungsamaturen gemessen werden. Dafür wird die Messtechnik in verriegelbaren Strassenkappen DIN3583 Grösse 3 installiert.

Zur Bewältigung dieser Aufgabe fiel die Wahl auf den Prozesswächter des Typs LS-42 der Firma AIRVALVE. In umfassenden Tests hatte sich zuvor gezeigt, dass die Produkte der Prozesswächter-Reihe als einzige über eine integrierte Hochleistungsantenne verfügen, die selbst in Schachtbauwerken für eine störungsfreie Signalübertragung sorgen.

Langzeitstabilität und Nutzerfreundlichkeit sind Schlüsselfaktoren

Darüber hinaus funktioniert das Messinstrument dank einer leistungsstarken, wechselbaren Batterie unabhängig von Strom- und Telefonanschluss über einen Zeitraum von 10 Jahren und darüber hinaus. Der montagefreundliche, aus der Ferne konfigurierbare Prozesswächter stellt dank freier SIM-Kartenwahl oder Multi-Netz mit privatem VPN-Tunnel eine sicherer Übertragung der gemessenen Werte sicher (siehe Abbildung 1 zum Aufbau des Prozesswächters). Er eignet sich damit bestens für abgelegene oder nur schwer zugängliche Anlagen, die über einen langen Zeitraum zuverlässig und ohne aufwendige Wartungsarbeiten überwacht werden müssen.

Abbildung 1: Aufbau Prozesswächter (Quelle: AIRVALVE)

Diese Anforderung bezüglich Langlebigkeit und Leistungsfähigkeit wurden natürlich auch an den verwendeten Sensor zur Druckmessung gestellt. AIRVAVLE entschied sich hier für den Drucktransmitter ATM.ECO/N von STS.  Der 100 mbar Sensor wird von der wechselbaren Batterie des Prozesswächters mit Strom versorgt, verfügt über ein widerstandsfähiges Edelstahlgehäuse und liefert über einen Temperaturbereich von -5 bis 50°C präzise Ergebnisse mit einem Gesamtfehler von ≤ ± 0.70 %. In punkto Langzeitstabilität bietet der ATM.ECO/N < 0.5 %.

Aufbau der Messeinrichtung am Gasniederdrucknetz

Die gesamte Messeinrichtung zur Überwachung des Gasniederdrucknetzes wurde in Strassenkappen platziert (siehe Abbildung 2). Durch die Nutzung bereits bestehender Entlüftungsarmaturen konnten die dafür notwendigen Arbeiten ohne grossen Aufwand durchgeführt werden. Zur Implementierung der Druckmessung wurde der Stopfen des Entlüftungssteigrohres durch ein Reduzierstück ersetzt (1). Über einen Edelstahl-Kugelhahn kann der Messanschluss abgesperrt werden (2). Eine Kalibrierung des Drucksensors wird durch einen Minimess-Anschluss ermöglicht (3). Der Drucksensor (4) ist über eine Druckausgleich-Verteilerdose (5) mit dem AIRVALVE Prozesswächter (6) verbunden. Dieser ist über eine Klick-Halterung an einem Bodenanker (7) fixiert.

Abbildung 2: Übersicht der Messeinrichtung (Quelle: AIRVALVE)

Im 5-Minuten-Takt werden Messungen durchgeführt. Dieser Messintervall ist grundsätzlich zwischen einer und 60 Minuten frei zu wählen. Die gemessenen Werte werden mehrmals täglich an die Leitstelle übermittelt. Die Übermittlung der Werte kann über VPN-gesicherte Multi-Netz-Karten oder Rahmervertrags-SIM-Karten erfolgen. Die Kommunikation ist sowohl mit Internet-Leitstellen als auch mit SCADA-Systemen möglich. Im vorliegenden Anwendungsbeispiel entschied sich die SWK Netze GmbH für die Internet-Leitstelle „Web-LS“, um die erhobenen Daten über Hochsicherheitsserver zu verwalten.

Gesicherte Dichtheitsprüfung mit Relativ- und Absolutdruckverfahren

Gesicherte Dichtheitsprüfung mit Relativ- und Absolutdruckverfahren

Leckagen können fatale Folgen haben: Um Produktionsprozesse effizient zu gestalten und kostspielige sowie imageschädigende Rückrufaktionen zu verhindern, müssen Teile schon früh im Herstellungsprozess geprüft werden. Die Dichtheitsprüfung spielt somit eine wichtige Rolle im Qualitätsmanagement.

Der Nachweis der Dichtheit und die Ortung von Leckagen ist in verschiedenen Branchen ein fester Bestandteil der Qualitätssicherung. Zudem lassen sich durch frühzeitiges Erkennen fehlerhafter Teile im Herstellungsprozess unnötige Kosten vermeiden. Zu den Einsatzgebieten zählen sowohl die Überprüfung einzelner Komponenten als auch von kompletten Systemen in Serienproduktion oder Laborumgebungen. Die Branchen reichen von der Automobilindustrie (Zylinderköpfe, Getriebe, Ventile etc.) über die Medizintechnik bis hin zu den Kunststoff-, Verpackungs- und Kosmetikindustrien.

Das deutsche Unternehmen ZELTWANGER Dichtheits- und Funktionsprüfsysteme GmbH zählt zu den angesehensten Herstellern leistungsstarker Dichtheitsprüfgeräte. Je nach Anwendungsfall stehen eine Reihe Dichtheitsprüfmethoden zur Wahl, darunter das Relativdruck- und Absolutdruckverfahren.

Dichtheitsprüfung mittels Relativ- oder Absolutdruckverfahren

Die Relativ- oder Absolutdruckverfahren haben die folgenden entscheidenden Vorteile:

  • kompakter Prüfaufbau mit kleinem Eigenvolumen
  • hohe Betriebssicherheit
  • grosser Messbereich
  • Möglichkeit zur Automatisierung

Bei diesen Verfahren wird der Prüfling mit einem definierten Druck beaufschlagt. Gemessen und analysiert wird die durch eine eventuelle Leckage entstehende Veränderung des Drucks über der Zeit. Beim Relativdruck ist die Differenz zum Umgebungsdruck entscheidend. Ist der Prüfdruck grösser als der Umgebungsdruck, spricht man von einer Überdruckprüfung. Als Unterdruckprüfung beziehungsweise Vakuumprüfung gilt, wenn der Druck geringer als der Umgebungsdruck ist. Beim Absolutdruckverfahren wird der Druck in Bezug auf das absolute Vakuum ermittelt.

Bei der Dichtheitsprüfung mittels des Relativ- oder Absolutdruckverfahrens setzt ZELTWANGER auch Druckmesszellen aus dem Hause STS ein. Die Anforderungen an die eingesetzte Technik sind hoch. Gefordert sind:

  • hervorragende Signalverarbeitung
  • variable Druckmessbereiche
  • variable Messverfahren (Differenz-, Relativ- und Absolutdruck)
  • hohe Zuverlässigkeit

Der Drucksensor ATM von STS erfüllt die geforderten Spezifikationen mit einem weiten Druckmessbereich von 100 mbar bis 1000 bar und einer Kennlinie von ≤ ± 0.10 %FS. Abgesehen von diesen Werten sind die Störungssicherheit und die sehr gute Signalverarbeitung entscheidende Merkmale. Die Modularität der STS Sensoren gibt Herstellern die Möglichkeit, sie unkompliziert in ihre Anwendungen zu integrieren.

Die STS Drucktransmitter kommen neben von ZELTWANGER selbst entwickelten Sensoren in den Geräten der ZED-Reihe zum Einsatz. Diese zeichnen sich durch ihre Vielseitigkeit und Genauigkeit aus. Das Gerät ZEDbase+ misst beispielsweise zuverlässig Relativ-, Differenzdruck und Massefluss. Die erfassten Prüfdrücke reichen je nach Methode von Vakuum bis 16 bar. Beim Relativdruck können kleinste Druckänderungen von 0,5 Pa bis 4 Pa registriert werden. Neben den technischen Voraussetzungen sind auch die zuverlässige Liefersituation sowie die flexible und unkomplizierte Kundenbetreuung durch STS entscheidende Argumente – übrigens eine grosse Gemeinsamkeit beider Unternehmen: Ziel ist stets, Kunden bedürfnisrechte Lösungen zur Verfügung zu stellen, die den geforderten Spezifikationen genau entsprechen.

Die richtige Ausrüstung zur Dichtheitsprüfung

Die richtige Ausrüstung zur Dichtheitsprüfung

In vielen Anwendungen sind Komponenten verbaut, die absolut dicht sein müssen, damit ein ordnungsgemässer Betrieb sichergestellt ist. Die Dichtheitsprüfung erfolgt mithilfe von Druckmessumformern.

Einige Beispiele von Anwendungen und Komponenten, bei denen Dichtheit unabdingbar ist:

  • Motoren, Bremssysteme, Klimaanlagen, Zylinder­köpfe, Ventile, Filtern, Kraftstoff­- und Einspritz­anlagen
  • Bestimmte Verpackungen, beispielsweise im medizinischen Bereich
  • Elektro-Hausgeräte
  • Kälteanlagen
  • Hydraulische Systeme

Bevor Komponenten installiert werden, die unbedingt dicht sein müssen, werden diese einer Versiegelung unterzogen. Die während der Produktion zur Dichtheitsprüfung eingesetzte Ausrüstung muss sehr zuverlässig arbeiten.

Üblicherweise wird ein Lecktest mittels einer Druckmessung durchgeführt. Auf die zu testende Komponente wird dabei Druck gegeben. Nach einer kurzen Ruhephase wird der Druck erneut gemessen. Ist es zu einem Druckabfall gekommen, ist dies ein eindeutiges Zeichen für eine undichte Komponente.

Die stabile und präzise Funktion des zur Prüfung eingesetzten Drucksensors ist entscheidend für die Feststellung von Leckagen. Besonders die Anforderungen hinsichtlich Beeinträchtigungen durch atmosphärisches Rauschen und Stabilität sind sehr hoch. Bereits minimale Druckverluste müssen zuverlässig erkannt werden.


Ablauf einer Dichtheitsprüfung mit Drucksensoren

Für einen 10-bar-Sensor sollten diese Werte beispielsweise 10 … 20 Pa oder 0,001 % .. 0,002 % des Skalenendwerts nicht überschreiten.

STS stellt bereits seit Jahren Sensoren für die Dichtheitsprüfung her, darunter die analogen Drucktransmitter der ATM-Serie mit einem 4…20 mA Ausgangssignal. Das hochpräzise Messelement erkennt bereits geringe Druckverluste im mbar-Bereich und entspricht damit den hohen Anforderungen der Anwendung.

Die mechanische Ausführung (Prozessanschluss und elektrischer Anschluss) beeinflusst das Verhalten des Sensors nicht und kann innerhalb des STS-Baukastensystems konfiguriert werden.

Die Drucksensoren der ATM-Serie sind mit verschiedenen Ausgangssignalen erhältlich. In dieser Anwendung ist es allerdings wichtig, 4…20 mA zu verwenden, da es bei diesem Ausgangssignal zu keinen Beeinträchtigungen durch atmosphärisches Rauschen kommt.

Mehr zum Thema Dichtheitsprüfung lesen Sie hier.

Wasserstoffversprödung bei Stahl

Wasserstoffversprödung bei Stahl

Der Sensor-Chip piezoresistiver Druckmessumformer ist gewöhnlich von einer Stahlmembran umgeben. Auch für die Gehäuse der Messinstrumente wird für die meisten Anwendungen Edelstahl verwendet. Kommt es zu Wasserstoffkontakt, kann der Werkstoff spröde werden und reissen.

Wasserstoffversprödung tritt nicht nur bei Stahl, sondern auch anderen Metallen auf. Daher ist die Verwendung von Titan beispielsweise keine Alternative im Hinblick auf Wasserstoffanwendungen.

Was versteht man unter Versprödung?

Wasserstoffversprödung bezeichnet einen Verlust von Duktilität im Material. Duktilität beschreibt die Eigenschaft von Materialien, sich unter Belastung plastisch zu verformen, bevor sie brechen. Stahl kann sich je nach Sorte um mehr als 25 Prozent verformen. Materialien, die diese Fähigkeit nicht haben, nennt man brüchig.

Auch duktile Werkstoffe können brüchig, also spröde werden. Ist die Versprödung des Materials die Folge von Wasserstoffabsorption, spricht man von Wasserstoffversprödung.

Wasserstoffversprödung tritt auf, wenn atomarer Wasserstoff in den Werkstoff diffundiert. Die Voraussetzung für Wasserstoffversprödung ist in der Regel Wasserstoffkorrosion.

Wasserstoffkorrosion, auch Säurekorrosion, findet immer dann statt, wenn Sauerstoffmangel besteht und Metall in Kontakt mit Wasser kommt. Als Endprodukt der Redoxreaktion bleibt reiner Wasserstoff zurück, der das Metall oxidiert. Das Metall geht als Ionen in Lösung. Das Material wird dabei gleichmässig abgetragen.

Der durch die Redoxreaktion freigewordene Wasserstoff diffundiert dank der geringen Atomgrösse von nur etwa 0,1 Nanometer in den Stahl ein. Direkt im Metallgitter des Werkstoffs besetzt der Wasserstoff als Atom Zwischengitterplätze. Gitterstörungen vergrössern dabei das Aufnahmevermögen. Es kommt zu einer chemischen Materialermüdung, die schliesslich schon bei geringen Belastungen plötzlich Risse von innen nach aussen entstehen lassen können.

Wasserstoff und Druckmessumformer

Aufgrund der sehr geringen Grösse kann Wasserstoff nicht nur in das Material eindringen, er kann es auch gänzlich durchdringen. Es kann also nicht nur zu einer Versprödung des Werkstoffes kommen. Die Metallmembranen von piezoresistiven Drucksensoren sind sehr dünn – je dünner, desto empfindlicher und genauer arbeitet der Sensor. Diffundiert Wasserstoff in und durch die Membran (Permeation), kann er mit der den Sensor-Chip umgebenden Übertragungsflüssigkeit reagieren. In der Folge kommt es durch Wasserstoffanlagerungen zu Veränderungen der messtechnischen Eigenschaften der Messbrücke. Gleichzeitig kann es durch die Einlagerungen auch zu einer Druckerhöhung kommen, die in einer Wölbung bis hin zur völligen Zerstörung der Sensormembran resultiert.

Neben einer dickeren, dafür aber etwas ungenaueren, Membran kann dieser Prozess durch eine Goldlegierung stark verzögert und die Lebensdauer optimiert werden. Mehr dazu lesen Sie hier.

Zur Lebensdaueroptimierung von Druckmessumformern mit Wasserstoffkontakt haben wir auch eine kostenlose Infografik für Sie zusammengestellt:

Lebensdaueroptimierung von Drucktransmittern mit Wasserstoff-Kontakt

Lebensdaueroptimierung von Drucktransmittern mit Wasserstoff-Kontakt

Wasserstoff-Atome sind sehr klein. Durch diese Eigenschaft durchdringen sie auch feste Materialien. Diesen Vorgang nennt man Permeation. Mit der Zeit werden Drucktransmitter durch diesen Prozess funktionsunfähig. Die Lebensdauer kann aber optimiert werden.

Bei piezoresistiven Druckmessumformern wird der Sensor-Chip von einer Flüssigkeit, meistens Öl, umschlossen. Dieser Bereich ist wiederum von einer sehr dünnen, 15 bis 50 μm dicken Stahlmembran abgeschlossen. Aufgrund der geringen Atomgrössse von Wasserstoff kann das Gas durch das Kristallgitter von Metallen diffundieren (siehe Infografik). Mit der Zeit führt das eingedrungene Gas dazu, dass es zu einer nicht mehr tolerierbaren Signalnullpunktverschiebung kommt und sich die Stahlmembran nach aussen wölbt. Der Drucksensor ist somit unbrauchbar.

Übersicht: Die Eigenschaften von Wasserstoff

Infografik: malachy120///AdobeStock

Drucksensoren kommen bei einer Vielzahl Anwendungen in Kontakt mit Wasserstoff, sei es bei der Überwachung von Wasserstofftanks selbst, U-Booten oder der Automobilbranche. Gerade bei Letzterer kommt Wasserstoff bei der Entwicklung alternative Antriebsformen verstärkt zum Einsatz. Viele Hersteller arbeiten seit einigen Jahren an Modellen mit Brennstoffzellen, einige Städte setzen im öffentlichen Nahverkehr bereits auf Wasserstoffbusse. Die Vorteile sind nicht von der Hand zu weisen: Als Ausgangsstoffe werden lediglich Wasserstoff und Sauerstoff benötigt. Durch eine chemische Reaktion wird Energie in Form von Strom erzeugt. Dabei entstehen keinerlei Abgase (das Verbrennungsprodukt ist Wasserdampf). Darüber hinaus ist Wasserstoff im Gegensatz zu fossilen Brennstoffen in unerschöpflichen Mengen vorhanden. Die Entwicklung ist schon weit vorangeschritten, so gibt es Modelle, die auf 100 Kilometer lediglich 3 Liter Wasserstoff verbrauchen. Strecken von bis zu 700 Kilometer mit einer Tankfüllung sind zum Teil schon möglich.

Dafür sind leistungsstarke, hochpräzise Drucktransmitter nötig, die die Wasserstofftanks in den Fahrzeugen überwachen. Konkret müssen Druck und Temperatur im Wasserstofftank des Fahrzeugs überwacht werden. Dabei kommt es zu Drücken von bis zu 700 bar. Auch ein grosser Temperaturbereich muss abgedeckt werden. Natürlich ist es unabdinglich, dass die eingesetzten Drucktransmitter ihren Dienst über einen lagen Zeitraum mit der geforderten Präzision verrichten. Um die Lebensdauer des Sensors in Anwendungen mit Wasserstoff zu optimieren, gilt es verschiedene beeinflussende Faktoren zu beachten:

  • Druckbereich: Der Gasstrom durch die Sensor-Membran ist proportional zur Quadratwurzel des Gasdrucks. Ein zehnmal tieferer Druck erhöht die Lebensdauer des Sensors um rund 3 Mal.
  • Temperatur: Der Gasfluss durch die Sensor-Membran nimmt bei höheren Temperaturen zu und hängt von der Materialkonstante ab.
  • Membranstärke: Der Gasfluss ist umgekehrt proportional zur Membrandicke. Die Verwendung einer 100 μm anstelle einer 50 μm dicken Membran verdoppelt die Lebensdauer des Sensors.
  • Membranfläche: Der Gasfluss ist direkt proportional zur Membranoberfläche (das Quadrat des Membrandurchmessers). Mit einem Ø 13 mm anstelle einer Ø 18,5 mm Membran verdoppelt sich die Lebensdauer des Sensors.

Da bei Wasserstofftanks in Fahrzeugen sowohl hohe Drücke als auch grosse Temperaturschwankungen auftreten können, lässt sich die Lebensdauer der Sensoren nicht über diese zwei Faktoren beeinflussen. Auch die Faktoren Membranstärke und Membranfläche versprechen nur bedingt Abhilfe. Zwar lässt sich die Lebensdauer durch diese Faktoren verbessern, aber noch nicht optimal.

Wir haben eine gratis Infografik zum Thema für Sie zusammengestellt:

Goldbeschichtung: Die effektivste Lösung

Die Permeabilität von Gold ist um 10’000 niedriger als die von rostfreiem Stahl. Durch eine Goldbeschichtung (0.1 bis 1 μm) einer 50 μm Stahlmembran kann die Wasserstoff-Permeation deutlich effektiver unterdrückt werden als durch eine Verdoppelung der Membrandicke auf 100 μm. Im ersten Fall kann die Zeit, bis sich ein kritisches Wasserstoffgasvolumen im Inneren des Drucksensors sammelt, um den Faktor 10 bis 100 verlängert werden, im zweiten Fall nur um den Faktor zwei. Voraussetzung dafür ist eine möglichst Kanalfreie und optimierte Schweissung sowie eine weitgehend fehlerfreie Beschichtung.

Bild 1: Beispiel von einem Drucktransmitter mit goldbeschichteter Membran

Aufgrund dieser Eigenschaften von Gold hinsichtlich der Permeabilität durch Wasserstoff verwendet STS für Wasserstoff-Applikationen standardmässig mit Gold beschichtete Edelstahlmembranen.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!