Para cumplir con la cada vez más estricta legislación sobre emisiones en todo el mundo, los fabricantes de equipos originales están optando por motores de encendido por chispa reducidos. Si bien estos motores más pequeños consumen menos combustible y producen emisiones significativamente más bajas, requieren inducción forzada para ofrecer el rendimiento que los conductores esperan de los vehículos de pasajeros modernos.

La capacidad de conducción de estos motores turbo reducidos debe al menos igualar el rendimiento de sus equivalentes de aspiración natural. Esto requiere una presión de sobrealimentación completa a bajas velocidades del motor sin quedarse sin vapor a alta velocidad, lo que solo se puede lograr con un sofisticado sistema de control de presión de sobrealimentación.

El principal problema con estos motores de encendido por chispa de inducción forzada es el control preciso de la relación aire-combustible cerca de los valores estequiométricos a diferentes presiones de refuerzo. A velocidades bajas, estos motores son propensos a golpear bajo cargas medias a altas.

Sistemas modernos de control de presión

El control de la derivación del lado de la turbina es la forma más sencilla de control de la presión de sobrealimentación.

Una vez que se alcanza una presión de refuerzo específica, parte del flujo de gas de escape se redirige alrededor de la turbina a través de un bypass. Un diafragma cargado por resorte generalmente opera la compuerta de descarga que abre o cierra el bypass en respuesta a la presión de refuerzo.

En los últimos tiempos, los fabricantes han recurrido a la geometría de turbina variable para regular la presión de sobrealimentación. Esta geometría variable permite variar la sección transversal del flujo de la turbina para que coincida con los parámetros de funcionamiento del motor.

A bajas velocidades del motor, la sección transversal del flujo se reduce cerrando las paletas de guía. La presión de sobrealimentación y, por tanto, el par motor aumenta como resultado de la mayor caída de presión entre la entrada y la salida de la turbina. Durante la aceleración desde velocidades bajas, las paletas se abren y se adaptan a los requisitos correspondientes del motor.

Regulando la sección transversal del flujo de la turbina para cada punto de funcionamiento, se puede optimizar la energía de los gases de escape y, como resultado, la eficiencia del turbocompresor y, por lo tanto, la del motor es superior a la conseguida con el control de derivación.

En la actualidad, los sistemas electrónicos de regulación de la presión de sobrealimentación se utilizan cada vez más en los motores de gasolina modernos de encendido por chispa. En comparación con el control puramente neumático, que solo puede funcionar como un limitador de presión de carga completa, un control de presión de refuerzo flexible permite un ajuste óptimo de la presión de refuerzo de carga parcial.

El funcionamiento de la aleta, o las paletas, se somete a una presión de control modulada en lugar de una presión de sobrealimentación completa, utilizando varios parámetros como la temperatura de carga, el avance del tiempo de encendido y la calidad del combustible.

La simulación reduce el tiempo de producción y los costos de desarrollo

Ante una plétora de variables complejas, los fabricantes han recurrido a la simulación durante la fase de diseño y prueba.

Un obstáculo importante que se debe superar con los motores turboalimentados reducidos es el rango estrecho dentro del cual el compresor centrífugo funciona de manera estable a altas presiones de refuerzo.

La única forma de crear un modelo de simulación eficaz es mediante pruebas exhaustivas del mundo real . Esta prueba se realiza principalmente en dinamómetros de motores en cámaras climáticas.

Durante las ejecuciones totalmente abiertas y con aceleración parcial, se registra la siguiente información de presión:

  • Presión del colector de admisión
  • Impulso de presión
  • Presión barométrica

Por supuesto, todo esto está integrado con las temperaturas del motor (refrigerante y aceite) para obtener una imagen del rendimiento del motor en todo el rango de velocidad del motor.

Durante esta prueba, es importante que los ingenieros noten cualquier anomalía en el rendimiento, ya que eventos como los pulsos de escape a una velocidad específica del motor pueden generar ondas estacionarias que pueden excitar el impulsor a una frecuencia crítica que reducirá la vida útil del turbo o incluso conducirá a Fallo catastrófico.

Por lo tanto, la medición de mapas de rendimiento de presión tanto del compresor como de la turbina es vital para la creación de un modelo de extrapolación preciso para su implementación durante la simulación.

Una herramienta de simulación bien desarrollada puede ahorrarle tiempo y dinero al OEM en pruebas de dinamómetro y en carretera, pero solo se puede desarrollar una vez que se hayan completado los mapas de presión.

Suscríbete a nuestro boletín

Suscribase a nuestra lista de correo para recibir las últimas noticias y actualizaciones de nuestro equipo.

¡Te has suscripto satisfactoriamente!