Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Water Archives - Switzerland (ES)
Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Recursos renovables: almacenamiento de energía en aplicaciones marinas

Recursos renovables: almacenamiento de energía en aplicaciones marinas

Los recursos renovables se están volviendo cada vez más populares, tanto en tierra como en grandes sistemas costa afuera. Sin embargo, hay un problema considerable que actualmente restringe el crecimiento del mercado: toda la energía que se está produciendo, ya sea aprovechando la fuerza del mar , el sol o el viento, tiene que ser utilizada de inmediato. Cualquier excedente que no pueda utilizarse instantáneamente se desperdicia irrevocablemente. Además, las fuentes renovables tienden a ser inestables porque las condiciones naturales pueden cambiar repentinamente, lo que afecta directamente la potencia de salida. La solución a este problema es obvia: inventar una forma de almacenar energía para su uso posterior. 

La tecnología de doble cámara permite el almacenamiento de energía independiente

Con su proyecto FLASC , ingenieros de la Facultad de Ingeniería de la Universidad de Malta han encontrado la forma de hacerlo. Han desarrollado un procedimiento para sistemas marinos que permite almacenar eficazmente el excedente de energía. El aire comprimido se utiliza para almacenar energía. Soluciones similares que ya están en uso dependen de la presión hidrostática , que a su vez depende de la profundidad del agua. Por el contrario, la tecnología de cámara doble FLASC permite un rango de presión independiente, sin importar la profundidad del agua. De esa manera, el excedente de energía se puede almacenar y liberar de forma segura a intervalos específicos que se pueden configurar individualmente. Esto asegura que los cambios en el entorno natural ya no afecten directamente a la potencia de salida.

Medición exacta con sensores STS ATM / N / T

Toda la tecnología se basa en una presión de aire estable que debe garantizarse en todo momento. Para ello, FLASC utiliza sensores ATM / N / T STS de alta calidad . Los sensores sensibles miden la presión y la temperatura del aire en tres puntos diferentes del sistema. Con material de carcasa fabricado en titanio resistente, los sensores están perfectamente equipados para su uso permanente en agua salada. Gracias al elemento sensor de temperatura integrado PT100, pueden cubrir un rango de medición de temperatura de 5 a 80 ° C. Todos los datos recopilados se transfieren al sistema SCADA, donde se pueden monitorear en tiempo real.

Sitios contaminados: la descontaminación del agua subterránea requiere sensores de nivel robustos

Sitios contaminados: la descontaminación del agua subterránea requiere sensores de nivel robustos

Ya sean vertederos viejos, vertederos de carbón, antiguos emplazamientos militares o refinerías, lo que queda atrás es suelo contaminado, que es un peligro tanto para los seres humanos como para el medio ambiente. En la rehabilitación de estos sitios, se requieren sensores de nivel que sean resistentes a las sustancias peligrosas a menudo agresivas que se encuentran.

Los sitios contaminados no solo se caracterizan por cambios adversos para la salud o el medio ambiente en el suelo. En ausencia de medidas de seguridad (como en los viejos vertederos) y dependiendo de las condiciones del suelo, la lluvia arroja sustancias peligrosas al agua subterránea. Dependiendo del tipo de uso, se pueden encontrar varias sustancias peligrosas diferentes, que incluyen, entre otras:

  • Compuestos de metales pesados: cobre, plomo, cromo, níquel, zinc y arsénico (un metaloide)
  • Materiales orgánicos: Fenoles, aceite mineral, bencenos, hidrocarburos clorados (CHC), hidrocarburos aromáticos (PAH)
  • Sales: Cloruros, sulfatos, carbonatos

Descontaminación del suministro de agua subterránea.

En la rehabilitación de sitios contaminados, no solo es de gran importancia la limpieza del suelo, sino también el control y depuración de las aguas subterráneas. Sin sensores de nivel fiables que puedan soportar las condiciones adversas, esto no sería posible.

El proceso de descontaminación generalmente se desarrolla de la siguiente manera: El agua subterránea contaminada se bombea a la superficie y luego se trata. Como agua de lavado filtrada, luego se devuelve a la fuente de contaminación. Para evitar que el agua de descarga fluya hacia un margen alejado de la fuente de contaminación, se utilizan métodos hidráulicos activos para la infiltración protectora. El agua se inyecta en el suelo a través de varios pozos situados alrededor del proceso de descontaminación. Las condiciones de presión que surgen aquí forman en cierta medida una pared de barrera y hacen que el agua de descarga fluya hacia la fuente de contaminación. Para controlar y monitorear este proceso, se requerirán sensores de nivel.

Figura 1: Flujo de un proceso de descontaminación

Por supuesto, los sensores de nivel también se utilizan después del trabajo de reparación. Mucho después de la finalización de este trabajo, los sitios afectados serán monitoreados para verificar si hay cambios notables en el nivel del agua o la dirección del flujo.

Los sensores de nivel también se utilizan cuando se ejecutan activamente aplicaciones potencialmente dañinas para el medio ambiente. Los rellenos sanitarios más nuevos ahora se construyen como una cuenca impermeable. El nivel del agua subterránea debajo del relleno sanitario se reduce, de modo que no pueda fluir agua a las áreas adyacentes en caso de fuga. Aquí también, los respectivos niveles de agua deben ser monitoreados por sensores de nivel.

Sensores de nivel en aguas contaminadas: las más altas exigencias 

Los operadores en el campo de la descontaminación de sitios contaminados deben tener mucho cuidado al elegir sensores de nivel adecuados. Debido a la gran cantidad de sustancias que se pueden disolver en el agua, no existe una solución única que funcione de manera confiable en todos los casos. Hay varios aspectos a considerar, que a continuación describimos brevemente.

Materiales

Alojamiento

En la mayoría de las aplicaciones, un acero inoxidable de alta calidad, como el que utiliza STS, es suficiente para proteger la celda de medición de sustancias agresivas. Si este entrara en contacto con agua salada, entonces se elegiría una carcasa de titanio, pero donde se esperan efectos galvánicos, se debe elegir un sensor de nivel hecho de PVDF .

Figura 2: Sensor de nivel ATM / NC químicamente resistente con carcasa de PVDF

Cable de sonda

En nuestra experiencia, mucho más crítico que elegir una carcasa adecuada es la elección del cable de la sonda. Debido a los procesos de difusión gradual, el progreso de la destrucción no es evidente de inmediato. A menudo, esto no es visible desde el exterior incluso cuando ya está dañado. Por lo tanto, se requiere especial precaución al consultar las tablas de resistencia, ya que generalmente dicen poco en particular sobre los cables de sonda. En el medio de un cable de sonda hay un pequeño tubo de aire, que sirve para igualar la presión relativa. Sin embargo, si el material del cable no es resistente al cien por cien, las materias primas pueden difundirse a través de la cubierta del cable y viajar a través del tubo de aire hacia el chip del sensor.

Dependiendo de las sustancias previstas, los usuarios de STS pueden recurrir a cables PE, PUR o FEP. Este último también se puede utilizar a temperaturas muy altas de hasta 110 ° C.

instalación

Tendido de cables

Los viejos vertederos y sitios industriales son entornos hostiles, donde no solo las sustancias peligrosas pueden afectar la funcionalidad de los sensores de nivel utilizados. Se debe tener cuidado de que la cubierta del cable no se dañe por cargas mecánicas (como escombros). También deben evitarse los puntos de roce y retorcimiento. Por lo tanto, se recomienda utilizar tubos protectores especiales, como los que ofrece STS, al enrutar los cables.

Alivio de tensión

La clasificación de compresión de los sensores de nivel varía de un fabricante a otro. En STS, todos los sensores de nivel son resistentes a la presión hasta 250 metros de forma estándar y su cable está diseñado para tensiones de tracción normales hasta esta profundidad. Sin embargo, los operadores deben considerar el uso de alivio de tensión en condiciones de instalación difíciles.

Montaje

Si el sensor se utiliza en aguas corrientes o tanques con agitadores, se puede suministrar con una rosca G 1/2 ”en la salida del cable (montaje en tubería) o con un racor de compresión (15 mm).

Protección contra explosiones

En aplicaciones en las que se esperan varias sustancias peligrosas, es imperativo prestar atención también a la protección contra explosiones. La directiva ATEX que cumple con los estándares internacionales proporciona información al respecto.

Corrección de datos de nivel de agua para fluctuaciones de presión barométrica

Corrección de datos de nivel de agua para fluctuaciones de presión barométrica

Levantamientos piezométricos del acuífero kárstico de Otavi: análisis de datos mediante el cálculo de la eficiencia barométrica

Se describen los conceptos principales para identificar y eliminar los efectos de la presión barométrica en acuíferos confinados y no confinados. Aunque se sabe comúnmente que los cambios de presión barométrica pueden afectar las lecturas del nivel del agua, se proporcionan pocos artículos y procedimientos para administrar correctamente los datos piezométricos.

Conocer la eficiencia barométrica reduce errores en el cálculo de superficies piezométricas y reducciones en los piezómetros durante las pruebas de bombeo. Stallman (1967) sugirió además que el movimiento del aire a través de la zona no saturada y el retraso de presión concomitante podrían ayudar a describir mejor las propiedades del acuífero. Rasmussen y Crawford (1997) describieron cómo la eficiencia barométrica varía con el tiempo en algunos acuíferos y cómo calcular la función de respuesta barométrica (BRF) correspondiente. También mostraron que este último parámetro está relacionado con el grado de confinamiento del acuífero. Finalmente presentamos una aplicación del procedimiento en un acuífero kárstico no confinado ubicado en el norte de Namibia (Otavi mountainland) donde un conjunto de cuatro transductores absolutoshan registrado cambios en el nivel del agua y mareas terrestres durante un período de 10 meses a 1 hora. intervalo.

Marco general

El área bajo investigación se encuentra en la parte SE de una meseta de 6000 kilómetros cuadrados con una elevación promedio de 1300-1500 m snm y colinas que alcanzan los 2000 m (ver más abajo).

Las formaciones rocosas están formadas por gruesos lechos de piedra caliza dolomítica con estromatolitos (500 pb). Los estratos se han plegado en una serie de sinclinales y anticlinales que generalmente golpean de este a oeste. La parte sur del área de estudio está bordeada por una falla larga con varias ocurrencias minerales (cobre, vanadio, plomo, zinc). Debido a la alta fracturación, la baja cobertura vegetal y la falta de suelo, la escorrentía superficial es casi nula. Dos cuencas de agua naturales, dolinas colapsadas, de 100 a 200 m de ancho, están ubicadas más al norte y fuera del área del proyecto. La precipitación media anual es de 540 mm (1926 – 1992) con picos durante el verano, entre diciembre y marzo. Desde mediados de los 70 y hasta el año 2000 la zona sufrió una caída de las precipitaciones que, junto con la actividad minera (Kombat, Tsumeb,

A partir de 2005, esta tendencia se ha revertido debido a la menor actividad de las minas y un nuevo régimen meteorológico.

Marco hidrogeológico

Esta región es conocida por sus características kársticas y alberga algunos lagos subterráneos anchos ubicados entre 70 y 120 m bajo la superficie del suelo.

El área también está clasificada como uno de los acuíferos más importantes del país (Departamento de Asuntos del Agua, MAWRD, área EF). Para obtener información más valiosa sobre este entorno en particular y ubicar posiciones alternativas para pozos de agua, preparamos dos mapas piezométricos (2007-2010) e instalamos 4 transductores de nivel de agua  en algunos puntos de agua a una distancia de 2-4 km en la granja de Harasib (figura 13).

Fig.13 Mapa piezométrico (febrero de 2007) y posición de tres registradores de nivel de agua

La superficie piezométrica de 2007 muestra un área de recarga, coincidente con los altos topográficos y alimentada por la infiltración de lluvia. Desde este punto, las direcciones del flujo subterráneo son hacia SW y SE. Durante esta etapa enfocamos nuestras investigaciones para definir: 

  • Tipo de acuífero
  • Conexiones del acuífero entre Harasib y los lagos del Dragón
  • Recargar

En 2007 se realizaron análisis químicos de aguas superficiales y profundas, mientras que se realizaron lecturas continuas de presión barométrica y nivel de agua durante un período de diez meses, entre septiembre de 2010 y junio de 2011. La recarga del acuífero comienza cuando la lluvia acumulada supera los 400-500 mm. El espesor de la parte insaturada varía de 40 a 100 m. Considerando este valor cercano a la precipitación media anual, y que el acuífero es kárstico y muy fracturado, cabe señalar que uno o dos años de escasas precipitaciones son suficientes para disminuir drásticamente el rendimiento explotable.

Eficiencia barométrica (BE) y función de respuesta barométrica (BRF)

Fig.16 Valores del período seco (septiembre – enero)

Las lecturas del nivel del agua se han analizado con el software BETCO (Sandia National Laboratories), para eliminar los efectos de los cambios de presión barométrica. Los valores medidos y corregidos se muestran en la fig. 16 y se refieren al período seco (septiembre – enero) mientras que la fig. 17 muestra los cambios de presión barométrica versus nivel de agua, usados ​​para el cálculo de la eficiencia barométrica.

Fig.17 Diferencia en la presión barométrica y los niveles de agua durante el período seco (septiembre-diciembre de 2010)

En todos los ejemplos notamos que:

  • Existe una buena correlación entre los valores medidos y corregidos, incluso si tienen una amplitud menor
  • Aún existe una variación decreciente en los valores corregidos; siendo excluidos los fenómenos de efectos cutáneos este comportamiento podría atribuirse a otros efectos no barométricos (mareas de tierra, doble porosidad)
  • Los valores iniciales de eficiencia barométrica son bastante similares (0,55 – 0,61)

En la Fig. 18 se representa la función de respuesta barométrica (BRF) que caracteriza la respuesta del nivel del agua a lo largo del tiempo a un cambio escalonado en la presión barométrica; esencialmente BRF es una función del tiempo desde la carga impuesta.

Fig. 18 Funciones de respuesta barométrica para los tres puntos de agua. Las curvas son similares (especialmente Dragon’s Breath y el lago Harasib), lo que sugiere un acuífero no confinado con quizás un componente de doble porosidad.

Se observa una buena concordancia para los tres puntos de agua. En el lago Dragon’s Breath, por ejemplo, hay un rápido aumento a 0.5 y una disminución a largo plazo a un valor más bajo (0.2 – 0.3 después de 20 horas), debido al lento paso del aire a través de las fracturas. El equilibrio entre la presión externa y el acuífero se alcanza en un valor de 0,1.

La forma de las tres curvas indica un acuífero no confinado con buenas conexiones hidráulicas especialmente entre Dragon’s Breath y el lago Harasib, este último a 2 km de distancia.

La correlación también ha sido probada por análisis isotópicos y químicos realizados en 2007 (profesor Franco Cucchi, Departamento de Geología, Universidad de Trieste).

En general, los datos recolectados confirman el comportamiento no confinado del acuífero, superpuesto por una capa insaturada gruesa y rígida, bien fracturada y conectada hidráulicamente. La eficiencia barométrica inicial es mayor que la final.

Mareas terrestres y lecturas de sensores

Fig. 19 Niveles de agua asl en el lago subterráneo. La ampliación anterior muestra pequeñas diferencias cíclicas debidas a las mareas terrestres.

Respecto a este último tema, los datos recopilados aún son escasos, pero creemos que es interesante ilustrar algunas reflexiones. Cuando se inspeccionan en detalle, las curvas muestran un patrón distintivo en zig-zag con picos cada 10-12 horas (fig. 19). Este comportamiento apoya el efecto de las mareas terrestres, produciendo ligeros cambios en el volumen de las fracturas y poros y por tanto en el potencial freático. El análisis de Fourier (Shumway, 1988) muestra la estructura armónica de los tres puntos de agua en la fig. 20 y los componentes de la marea en la fig. 21.

Fig.20 Estructura armónica de los tres puntos de agua

Fig.21 Magnitudes de marea para los principales componentes armónicos (valores en pies)

El área cercana al lago Harasib tiene los valores más altos para el componente M2 y esto puede considerarse como una indicación de una zona de transmisividad más alta (Merritt, 2004). Este hecho se confirma en parte por la presencia de una fractura local alargada ENE-WSW muy cerca del lago Harasib.

Observaciones finales

Las fluctuaciones de los niveles de agua en los acuíferos no se deben solo a variaciones de recarga. La presión barométrica y las mareas se encuentran entre las principales preocupaciones. Conocer la variación de la presión barométrica para un sitio en particular ayuda a validar un mapa piezométrico o una prueba de bombeo.  Se reconoce que los transductores de presión modernos ventilados a la atmósfera son extremadamente útiles cuando se instalan en pozos. Los registros son diferentes según el tipo de acuífero y los gráficos pueden ser diagnósticos del grado de confinamiento de los niveles monitoreados.

Los parámetros útiles que caracterizan este comportamiento son la eficiencia barométrica (BE) y la función de respuesta barométrica (BRF). Este último caracteriza un acuífero profundo no confinado cuando los valores son inicialmente altos y se aproximan a 0 en la respuesta a largo plazo, a la inversa, el acuífero está confinado / semiconfinido cuando los valores se mantienen constantes o se aproximan a 1 en la respuesta a largo plazo. A veces es necesario eliminar los efectos barométricos para interpretar correctamente una prueba de bombeo o disfrazar un mapa piezométrico. Finalmente, un análisis particular de los datos del nivel del agua permite calcular los componentes armónicos debidos a las mareas y, por tanto, algunas características hidrogeológicas.

Este enfoque teórico se ha aplicado a los datos recopilados para un proyecto de estudio de un acuífero kárstico no confinado en el norte de Namibia. Los niveles de agua han sido monitoreados durante un período de 10 meses, con lecturas horarias y mediante cuatro transductores. Los datos confirmaron los supuestos generales obtenidos durante las investigaciones anteriores y han subrayado la importancia del uso de tales instrumentos para la evaluación de acuíferos, mostrando particularmente:

  1. El papel de la recarga debido a la lluvia y la alta transmisividad alrededor del área del lago Harasib
  2. La buena conexión hidráulica y conductividad del acuífero
  3. La falta de capas de confinamiento (es un acuífero no confinado profundo y rígido)
  4. El efecto de almacenamiento de la parte insaturada, por encima del nivel freático, que comienza a drenar cuando la lluvia supera los 400/500 mm.
  5. Los otros efectos de la presión, como las mareas de tierra, se pueden resaltar utilizando transductores de nivel de agua.

Agradecimientos

Namgrows son las siglas de Namibian Groundwater Systems, un proyecto creado por el autor y el colega Gérald Favre, con la participación de geólogos y espeleólogos de 4 países diferentes (Italia, Suiza, Namibia, Sudáfrica). El proyecto fue apoyado en Namibia por el ing. Sarel La Cante y su esposa Leoni Pretorius (granja Harasib).

La empresa STS – Italia nos patrocinó proporcionando los sensores de nivel de agua y su soporte técnico.

También deseo agradecer al prof. Todd Rasmussen (Universidad de Georgia, Atenas) por proporcionar sus valiosos conocimientos sobre los datos y, en particular, los relacionados con la eficiencia barométrica y las mareas terrestres.

Fuente: Dr. Alessio Fileccia / Geólogo consultor

Registradores de nivel que monitorean los niveles de agua en Venecia

Registradores de nivel que monitorean los niveles de agua en Venecia

La Piazza San Marco nunca se inundará: los registradores de datos de nivel de STS se utilizan para medir continuamente los niveles de agua subterránea en la Piazza San Marco. Estos son particularmente robustos y también son adecuados para su aplicación en varios escenarios.

En 2003, la empresa SPG comenzó a instalar varios registradores de datos de aguas subterráneas en la Piazza San Marco de Venecia. Estos fueron diseñados para las demandas específicas y poseen, sobre todo, el atributo de soportar varios días sumergidos en aguas salinas, ya que con las mareas crecientes, la Piazza San Marco se inunda regularmente. El sitio opera en conjunto con los esfuerzos iniciados por la autoridad reguladora del agua para proteger las lagunas y la ciudad de Venecia de las inundaciones.

El consorcio designado de Venezia Nuova designó el muelle frente a la Piazza San Marco con características técnicas innovadoras. El desafío consistió en monitorear el flujo de agua subterránea, que se fue desplazando gradualmente desde el área del sitio a los edificios ubicados detrás. A pedido del cliente, se instalaron registradores de datos de nivel de STS para medir continuamente las fluctuaciones en los niveles de agua subterránea.

El registrador de datos de aguas subterráneas  permite una medición simultánea de nivel, temperatura y conductividad en rangos de 0… 50 cmWS a 0… 250 mWC, -5 a 50 ° C y 0.020… 20 mS / cm. Cuando sea necesario, el usuario final puede adaptar una unidad de transmisión de datos en cualquier momento. El registrador presenta una operación simple y fácil de usar, una memoria de medición extendida para hasta 1.5 millones de lecturas y un diámetro de sonda de solo 24 mm o 10 mm.

Las unidades enchufables también permiten la posibilidad de extensión de cable. Las nuevas funciones del software también se pueden actualizar sin que sea necesario devolverlas por parte del usuario final. Las baterías de litio estándar se pueden cambiar en el sitio en poco tiempo. Los datos pueden transferirse en formato ASCII o XML y procesarse posteriormente utilizando software estándar como Excel. Los intervalos de almacenamiento de datos variables que dependen de la presión o el tiempo permiten mediciones versátiles.

Mediante el uso de varios materiales, incluido el acero inoxidable, titanio, PUR, PE o cable de teflón, se logra una tolerancia media alta para las más variadas aplicaciones, como vertederos, sitios contaminados, pruebas de bombas, alarmas de nivel alto de agua y descarga / desbordamiento. registro en cuencas de desbordamiento de lluvia.

Publicación original: Revista Construction

Agua a pesar de la sequía

Agua a pesar de la sequía

Los expertos en gestión del agua del Instituto de Tecnología de Karlsruhe (KIT) han construido una presa subterránea con una planta hidroeléctrica integrada dentro de una caverna kárstica en la isla indonesia de Java. La central eléctrica ubicada a 100 metros bajo tierra ahora proporciona abundante agua de la caverna durante la estación seca. Dos registradores de datos instalados allí miden los niveles de agua tanto delante como detrás del muro de la presa. El nivel del agua superior alcanza los 15 – 20 m, mientras que el nivel inferior, donde el agua se descarga nuevamente desde la turbina, alcanza un máximo de 2 m.

La zona kárstica de Gunung Kidul en la costa sur de Java es una de las regiones más pobres de Indonesia. El suelo es demasiado árido para un suministro abundante y en la estación seca las aguas que fluyen realmente se secan. El agua de la temporada de lluvias se agota con bastante rapidez, pero se acumula dentro de un sistema de cuevas subterráneas. Este depósito de agua natural ahora se ha aprovechado con una central eléctrica de cueva. El hecho de que incluso en la estación seca más de 1.000 litros de agua por segundo fluyan a través de la cueva Bribin habla de la ubicación ideal de esta presa. En lugar de turbinas complejas, la energía mecánica para impulsar las bombas de alimentación se genera mediante bombas de circulación de accionamiento inverso. Las cinco bombas de alimentación que operan en paralelo son, por lo tanto, muy rentables, ya que solo generan costos de operación y mantenimiento menores. Las bombas de suministro envían parte del agua a 220 m de altura a un lago llamado Embalse Kaligoro situado sobre una montaña. El obstáculo clave de este proyecto se superó con éxito durante la fase de prueba de represas. La cueva retuvo el agua de manera efectiva y de hecho se logró una altura crucial de la presa de 15 m.

En marzo de 2010, la instalación se entregó a las autoridades indonesias. Ahora puede proporcionar a 80.000 personas hasta 70 litros de agua por día. Anteriormente, la población solo disponía de 5 a 10 litros diarios durante la estación seca, para fines de higiene personal, domésticos y ganaderos. Por cierto, cada alemán usa una media de 120 litros por día, a modo de comparación.

Función de los registradores de datos de presión

Los registradores de presión miden los niveles de agua delante y detrás del muro de la presa. El nivel normal asciende a 15 m, pero puede alcanzar hasta 20 m durante las fuertes lluvias. Las otras sondas miden el nivel del agua mientras están sumergidas, en particular cuando el agua sale de la turbina. En esta zona se registran niveles de hasta 2 m. Los registradores de presión de STS fueron elegidos debido a su alta capacidad de sobrecarga de 3 veces su rango de escala completa, la baja desviación de características de 0.1% máximo y una estabilidad mejorada a largo plazo de entre 0.1% y 0.5% FS por año.

Estos registradores de nivel cubren rangos de presión entre 0 – 100 mbar y 0 – 600 bar, lo que permite mediciones de nivel en los rangos de 0 – 100 cmAq a 0 – 6,000 mAq. El intervalo de medición en sí es variable entre 0,5 sy 24 h. Las unidades se distinguen además por una memoria de datos de medición de hasta 1,5 millones de valores medidos y un diámetro de sonda estrecho. Además, sus baterías de litio estándar se pueden cambiar en el sitio en muy poco tiempo.

Los intervalos de almacenamiento de datos variables que dependen de la presión o el tiempo permiten mediciones flexibles. Con el uso de diversos materiales como acero inoxidable, titanio, PUR, PE o cable de teflón, se logra una tolerancia media alta, lo que permite las más variadas aplicaciones. Además de los registros de nivel de agua subterránea, pozos, perforaciones, lagos y ríos, estos registradores de nivel también son adecuados para pruebas de fugas en proyectos de gas, agua y otros ductos, así como análisis de ductos y pruebas de presión en redes de ductos de calefacción de gas, agua y calefacción comunitaria. . También han demostrado su eficacia en estaciones de control de presión de gas y en la verificación de una presión de suministro constante.

Fuentes:  Instituto de Tecnología de Karlsruhe (KIT) – Instituto de Gestión del Agua y de las Cuencas Fluviales (IWG)

La fuerza del agua: energía renovable de los mares

La fuerza del agua: energía renovable de los mares

La idea de aprovechar la fuerza de los mares para generar energía no es nueva. El principal desafío radica en el desarrollo de sistemas de conversión de energía eficientes que mantengan los costos bajos sin afectar apenas al medio ambiente. En este sentido, ha surgido en Italia un proyecto muy prometedor denominado REWEC3.

El convertidor de energía de ondas resonantes (REWEC3) es una tecnología avanzada que produce energía eléctrica a partir de la energía de las olas del mar. La primera instancia de este tipo se ha construido con éxito en el puerto de Civitavecchia. Su principio funcional se basa en sistemas de Columna de Agua Oscilante (OWC).

Los OWC exhiben un gran potencial como fuente de energía renovable de bajo impacto ambiental. Cuando los niveles de agua alrededor y dentro de un OWC aumentan, el aire es desplazado dentro de una cámara colectora por este movimiento del agua y luego impulsado hacia adelante y hacia atrás a través de un sistema de toma de fuerza (PTO). El sistema PTO, a su vez, convierte este movimiento de aire en energía. Entre los modelos que convierten el movimiento del aire en electricidad, el sistema de toma de fuerza adopta la forma de una turbina bidireccional. Esto asegura que, independientemente de la orientación del flujo de aire, la turbina siempre gire en la misma dirección, proporcionando así energía continua.

El sistema REWEC3 en Civitavecchia surgió de un proyecto de investigación en la Universidad Mediterránea de Reggio Calabria y es operado hoy por Wavenergy.itempresa. La instalación consta esencialmente de un cajón armado de hormigón. Este cajón tiene un eje vertical en su lado de cara a las olas (1), que, a través de una abertura (2) al mar, por un lado, así como por una abertura más profunda (4), se conecta a cámara interior (3) en el otro lado. Esta cámara interior contiene agua en su sección inferior (3a) y una bolsa de aire en sus tramos superiores (3b). Un conducto de aire (5) conecta esta bolsa de aire con el aire ambiente a través de una turbina (6) autorreguladora. Los movimientos de las olas crean cambios de presión en la entrada del eje vertical (2). El agua del interior del eje sube y baja así dentro del interior del eje (1). De esta manera, la bolsa de aire en la sección superior del eje se comprime o expande. El aire fluye dentro del conducto de aire (5) y luego impulsa la turbina autorreguladora (6).

El principio de las instalaciones REWEC3 aprovecha los movimientos de las olas en el mar para generar energía. El aire dentro de la cámara de aire se comprime alternativamente (por picos de onda) y descomprime (por valles de onda) de modo que se crea un flujo de aire alterno dentro de un conducto que a su vez impulsa una turbina autorrectificadora. La energía eléctrica es posteriormente producida por un generador coaxial.

Las ventajas de las instalaciones REWEC3 en la generación de energía hablan por sí solas:

  • No inciden visualmente en el paisaje, ya que apenas son detectables desde el exterior.
  • Absorben los efectos de las olas y moderan el impacto de las tormentas en la costa.
  • La fauna marina no está en peligro debido a la posición elevada de las turbinas.
  • Una instalación de un kilómetro de longitud puede producir 8.000 MWh anuales.

Un sistema como el REWEC3 obviamente requiere un monitoreo rápido y confiable de las diferencias de presión que surgen del impacto de las olas. Después de extensas pruebas, los investigadores de la Universidad Mediterránea optaron por los sensores de nivel  ATM.1ST / N de alta precisión de STS. Para esta decisión a favor de los transmisores de presión ATM.1ST / N fueron cruciales los tiempos de respuesta muy cortos de <1ms / 10… 90% FS, así como su muy buena estabilidad a largo plazo en un amplio rango de temperaturas. Además, el hecho de que los instrumentos de medición de STS, gracias a su construcción modular, se puedan adaptar fácilmente a diversos requisitos, también es evidente. Los sensores de nivel ATM.1ST / N implementados pueden incluso configurarse fácilmente para su uso con los registradores de datos de National Instruments.

Fuente de la imagen: Wavenergy.it

Suscríbete a nuestro boletín

Suscribase a nuestra lista de correo para recibir las últimas noticias y actualizaciones de nuestro equipo.

¡Te has suscripto satisfactoriamente!