Galgas extensométricas en la tecnología de medición de presión

Galgas extensométricas en la tecnología de medición de presión

Las galgas extensométricas son dispositivos de medición que cambian su resistencia eléctrica mediante deformaciones mecánicas. Se utilizan en una variedad de instrumentos de medición que, además de básculas y celdas de carga, también incluyen sensores de presión.

Los sensores de presión se basan en varias variables físicas, que incluyen inductancia, capacitancia o piezoelectricidad. Sin embargo, la propiedad física más común por la que operan los transmisores de presión es la resistencia eléctrica que se puede observar en la deformación metálica, o efecto piezorresistivo, de los extensómetros semiconductores. La presión está determinada por una deformación mecánica, donde los extensómetros se unen a un soporte elástico. Aquí es importante que las galgas extensométricas puedan seguir los movimientos de este portador. Si una presión actúa sobre el portador, la deformación que surge provoca un cambio en la sección transversal de las pistas conductoras, lo que a su vez provoca un cambio en la resistencia eléctrica. En última instancia, es este cambio en la resistencia eléctrica lo que registra un transductor de presión y a partir del cual se puede determinar la presión.

Figura 1: Las galgas extensométricas se deforman bajo presión

La deformación que actúa sobre el conductor hará que cambie de longitud (Δl). Dado que el volumen sigue siendo el mismo, es la sección transversal y, por lo tanto, la resistencia R la que cambia:

ΔR / R = k • Δl / l

El cambio de resistencia (ΔR) es proporcional al cambio de longitud (Δl) y el factor de proporcionalidad (k) dependerá tanto de la geometría como de las propiedades del material. Mientras que ‘k’ será 2 para conductores metálicos, también puede ser muy alto en semiconductores. Debido a estos ‘factores k’ relativamente altos para los semiconductores, estos son más sensibles y, por lo tanto, pueden medir incluso los cambios de presión más mínimos. Sin embargo, la dependencia de la temperatura también aumenta como resultado de esto.

El cambio de resistencia en las galgas extensométricas metálicas se debe a cambios dimensionales (geometría). En las galgas extensométricas de semiconductores, sin embargo, el cambio se debe a alteraciones en la estructura cristalina ( efecto piezorresistivo ).

La evaluación del cambio de resistencia provocado por una deformación inducida por presión se realiza a través de un circuito puente. Para este propósito, las galgas extensométricas se conectan para formar un puente de Wheatstone (Figura 2). Dos de las galgas extensométricas se colocan en una dirección radial y dos en una tangencial. Es así que dos se estiran y dos se comprimen bajo deformación. Para compensar los efectos de la temperatura y que la señal sea lo más lineal posible, es importante que las galgas extensométricas tengan exactamente las mismas resistencias y estén dispuestas en una geometría exacta.

Figura 2: Circuito puente

Galgas extensométricas metálicas

Entre las galgas extensométricas metálicas, debemos diferenciar entre las variedades de lámina y de película fina.

Las galgas extensométricas de láminas consisten en láminas enrolladas, de solo unas pocas micras de espesor. El constantan se usa normalmente como material aquí, pero también se pueden emplear Karma y Modco, especialmente si se necesita un rango de temperatura mayor o las temperaturas están por debajo de -150 ° C. Constantan tiene un ‘factor k’ muy bajo de 2,05 y, por tanto, no es muy sensible. Teniendo esto en cuenta, el material muestra una menor dependencia de la temperatura, razón por la cual se utiliza con mayor frecuencia en galgas extensométricas de lámina.

Es más probable que se utilicen galgas extensométricas de lámina en celdas de carga. A menudo, no son lo suficientemente sensibles para ser transductores de presión, ya que con ellos no se pueden registrar valores inferiores a una barra. Su rango de temperatura también es relativamente limitado y, dependiendo de la versión, no deben superarse temperaturas de incluso 80 ° C.

Las galgas extensométricas de película fina se producen mediante la denominada técnica de película fina, por ejemplo, mediante deposición de vapor o revestimiento por pulverización catódica. El proceso de fabricación es más complejo aquí y también más caro que para los calibres de lámina. Por otro lado, sin embargo, es posible un rango de temperatura de 170 ° C, siendo también muy buena su estabilidad a largo plazo.

Las galgas extensométricas metálicas de película delgada proporcionan instrumentos de medición estables a largo plazo, pero también bastante costosos. Es cierto que cuanto menores sean las presiones a detectar, mayor será el coste de fabricación. Las presiones bajas de menos de 6 bar solo se pueden detectar con poca precisión.

Galgas extensiométricas semiconductoras

Las galgas extensométricas semiconductoras funcionan por efecto piezorresistivo . El material utilizado en la mayoría de los casos es el silicio. Las galgas extensiométricas semiconductoras tienden a ser más sensibles que la variedad metálica. También suelen estar separados del medio por una membrana de separación, y la presión se transmite a través de un fluido de transferencia.

Figura 3: Dispositivo de medición piezorresistivo

En los materiales semiconductores, el efecto piezorresistivo es unas cincuenta veces más pronunciado que con las galgas extensométricas metálicas. Las galgas extensométricas semiconductoras se pegan a un soporte o se recubren directamente sobre él. Este último permite una unión intensa y asegura la ausencia de histéresis, así como la resistencia al envejecimiento y la estabilidad térmica. Aunque el efecto piezorresistivo no es exclusivo de la galga extensométrica semiconductora, el término “sensor de presión piezorresistivo” se ha utilizado para instrumentos en los que la estructura elástica se deforma bajo presión y las resistencias están integradas en un solo chip. Los transductores de presión piezorresistivos se pueden hacer de tamaño pequeño y (aparte de la membrana) sin partes móviles. Su producción se basa en métodos normales de fabricación de semiconductores. Al mismo tiempo,

Galgas extensométricas piezoeléctricas de película finaestán unidos a un soporte de silicio y separados del soporte por una capa aislante. Esto aumenta los requisitos de fabricación y, por lo tanto, también el precio, pero aquí son posibles rangos de temperatura de -30 ° C a 200 ° C. Gracias a las propiedades altamente elásticas del silicio, solo se puede esperar una baja histéresis con estos. Es el alto ‘factor k’ el que logra la alta sensibilidad, lo que convierte a los transmisores de presión piezorresistivos en la primera opción para los rangos de presión más pequeños en la escala de mbar. Además, se pueden producir dispositivos de pequeñas dimensiones, lo que tiene un efecto positivo en el alcance de las aplicaciones potenciales. Además, la estabilidad a largo plazo y la compatibilidad EMC son muy buenas, y esto último, por supuesto, depende del material de soporte. La compensación de temperatura, sin embargo, requiere un poco más de esfuerzo,Puede leer más sobre la compensación de temperatura aquí .

Las galgas extensométricas de película gruesa se imprimen sobre membranas cerámicas o metálicas. Con un grosor de 20 micrones, son hasta 1.000 veces más gruesos que las galgas extensométricas de película fina. Debido a sus bajos requisitos de producción, estos son más baratos en precio, pero no muy estables a largo plazo debido al envejecimiento de su película gruesa.

Resumen: El tipo de galga extensiométrica utilizada tiene una gran influencia en el instrumento de medición. Factores como el precio, la precisión y la estabilidad a largo plazo juegan un papel importante en la elección del transmisor de presión adecuado . En nuestra experiencia, los transmisores de presión con galgas extensométricas piezoeléctricas de película delgada han demostrado ser los más eficientes porque, gracias a su sensibilidad, pueden registrar amplios rangos de presión con alta precisión, al mismo tiempo que exhiben una buena estabilidad a largo plazo.

Ensuciamiento como causa de desviación en los sensores de presión

Ensuciamiento como causa de desviación en los sensores de presión

Todos conocemos el dicho de que “no se puede hacer una tortilla sin romper los huevos”. En el desarrollo de nuevos motores de combustión específicamente, esto significa que las partículas de hollín o los residuos de aceite pueden contaminar los sensores empleados.

La consecuencia de este tipo de suciedad se traduce en lecturas cada vez más inexactas. Cuando, por ejemplo, el sistema de escape de un nuevo motor de combustión está siendo monitoreado con transductores de presión, con el tiempo se depositará más y más polvo fino en el diafragma del sensor. Las membranas de los  sensores de presión piezorresistivos son muy delgadas para que puedan ofrecer resultados de medición de alta precisión. Pero cuando se forma una capa de hollín sobre esto con el tiempo, reduce la sensibilidad general del transductor de presión.

Protección de transmisores de presión contra partículas

Los usuarios finales toman nota de esta desviación en el sensor realizando mediciones de presión de referencia. Encontrarán diferencias considerables entre los valores de este manómetro de referencia y el sensor sucio en sí. A menudo, sin embargo, las lecturas experimentadas por los usuarios revelan cuándo las señales medidas se desvían demasiado de los resultados esperados. Las fuertes fluctuaciones en estos valores medidos también pueden ser un indicador de contaminación.

STS generalmente recomienda que los usuarios cuyos sensores estén expuestos a la suciedad los revisen después de un máximo de 100 horas de funcionamiento. Además, los usuarios también pueden intentar proteger el sensor tanto como sea posible de la contaminación. Aquí se utilizan dos métodos habituales.

Método 1: lámina protectora

El primer método no reemplaza el mantenimiento del sensor después de un máximo de 100 horas, pero simplifica la limpieza y también preserva la membrana. En este caso, se aplica una lámina protectora metálica muy fina a la membrana para protegerla de la suciedad. Después de un máximo de 100 horas de funcionamiento, esta película simplemente se retira y se reemplaza por una nueva.

Método 2: adaptador de refrigeración

Este método permite a los usuarios matar dos pájaros de un tiro. Al atornillar un adaptador de enfriamiento o una válvula climática en el extremo frontal del puerto de presión, la membrana ahora está protegida en gran medida contra la suciedad. La válvula climática se abre solo cuando realmente hay algo que medir. Cuando no se requiere un control permanente de la presión, este puede ser un buen método para minimizar el grado de contaminación del sensor empleado.

Al mismo tiempo, también se puede garantizar una temperatura constante del sensor a través de este elemento de refrigeración. Además de la contaminación de la membrana, la temperatura también tiene un efecto en la precisión de medición de los transductores de presión piezorresistivos ( más información sobre la influencia de la temperatura en la precisión de los sensores de presión se puede encontrar aquí ).

Limpieza de sensores de presión de contaminación por aceite

La contaminación con petróleo pesado se produce particularmente en el desarrollo de motores marinos. Los aditivos incorporados se depositan especialmente sobre la membrana e incluso pueden dañarla. Estos residuos reducen la sensibilidad del transductor de presión y aquí también debe observarse un servicio regular.

Para mantener la suciedad y sus consecuencias al mínimo posible, se debe considerar la naturaleza del sensor de presión en su selección. Se recomienda una membrana de acero inoxidable, que esté al ras y no tenga canales en los que puedan acumularse incluso los depósitos más pequeños. Cuanto más suave, mejor también se aplica aquí, porque en una membrana rugosa las partículas no deseadas se depositarán más rápido y también serán más difíciles de limpiar.

Para limpiar un sensor de presión sucio, debe retirarse de su aplicación. Aquí se recomienda isopropanol (IPA) como agente de limpieza. Si bien la carcasa del sensor no requiere precauciones especiales, la membrana debe tratarse sin presiones firmes utilizando, por ejemplo, hisopos de algodón. En ningún caso se debe utilizar aire comprimido, ya que las membranas son muy delgadas y, cuando se ejerce demasiada presión, pueden producirse deformaciones.

Medición de presión de alta precisión a altas temperaturas

Medición de presión de alta precisión a altas temperaturas

En algunas aplicaciones, los transmisores de presión deben funcionar de manera confiable cuando se exponen a temperaturas muy altas. Los autoclaves utilizados para esterilizar equipos y suministros en las industrias química y alimentaria son sin duda una de estas aplicaciones exigentes.

Un autoclave es una cámara de presión que se utiliza en una amplia gama de industrias para una variedad de aplicaciones. Se caracterizan por altas temperaturas y presiones diferentes a la presión del aire ambiente. Los autoclaves médicos, por ejemplo, se utilizan para esterilizar equipos mediante la destrucción de bacterias, virus y hongos a 134 ° C. El aire atrapado en la cámara de presión se elimina y se reemplaza por vapor caliente. El método más común para lograr esto se llama desplazamiento hacia abajo: el vapor ingresa a la cámara y llena las áreas superiores empujando el aire más frío hacia el fondo. Allí, se evacúa a través de un desagüe que está equipado con un sensor de temperatura. Este proceso se detiene una vez que se ha evacuado todo el aire y la temperatura dentro del autoclave es de 134 ° C.

Medición muy precisa a altas temperaturas

Los transmisores de presión se utilizan en autoclaves para seguimiento y validación. Dado que los sensores de presión estándar generalmente se calibran a temperatura ambiente, no pueden ofrecer la mejor precisión en las condiciones de calor y humedad que se encuentran en los autoclaves. Sin embargo, recientemente un cliente de la industria farmacéutica se ha puesto en contacto con STS y requiere un error total del 0,1 por ciento a 134 ° C que mide de -1 a 5 bar.

Los sensores de presión piezorresistivos son bastante sensibles a la temperatura. Sin embargo, los errores de temperatura se pueden compensar para que los dispositivos se puedan optimizar para las temperaturas encontradas en aplicaciones individuales. Por ejemplo, si utiliza un transmisor de presión estándar que alcanza una precisión del 0,1 por ciento a temperatura ambiente, el dispositivo no podría ofrecer el mismo grado de precisión cuando se usa en un autoclave con temperaturas de hasta 134 ° C.

Los usuarios que saben que necesitan un sensor de presión que logre un alto grado de precisión a altas temperaturas, por lo tanto, necesitan un dispositivo calibrado en consecuencia. Calibrar un sensor de presión para ciertos rangos de temperatura es una cosa. Sin embargo, el cliente que preguntó acerca de la aplicación del autoclave con demandas de precisión muy altas tuvo otro desafío para nosotros que fue aún más complicado de realizar que un sensor correctamente calibrado: no solo el elemento del sensor debía estar en el autoclave a 134 ° C, sino que El transmisor completo, incluida toda la electrónica, también tenía que ir allí. Desafortunadamente, no podemos entrar en detalles sobre cómo pudimos ensamblar un transmisor digital que ofrece la precisión deseada de menos del 0,1 por ciento de error total a 134 ° C, pero cuyos otros componentes también pueden manejar las condiciones de calor y humedad. .

En resumen: los sensores de presión piezorresistivos son sensibles a los cambios de temperatura. Sin embargo, con los conocimientos técnicos adecuados, se pueden optimizar para los requisitos de aplicaciones individuales. Además, no solo el elemento sensor se puede calibrar en consecuencia, todo el transmisor se puede ensamblar de manera que se puedan controlar incluso las condiciones de calor y humedad.

Interpretar correctamente los valores de precisión para sensores de presión

Interpretar correctamente los valores de precisión para sensores de presión

En la búsqueda de un transmisor de presión adecuado, varios factores influirán. Mientras que algunas aplicaciones requieren un rango de presión particularmente amplio o una estabilidad térmica prolongada, para otras la precisión es decisiva. El término “precisión”, sin embargo, no está definido por estándares. Le ofrecemos una descripción general de los distintos valores.

Aunque la “precisión” no es una norma definida, se puede verificar a partir de valores relevantes para la precisión, ya que estos se definen en todos los estándares. Sin embargo, la forma en que se especifican estos valores relevantes para la precisión en las hojas de datos de varios fabricantes depende totalmente de ellos. Para los usuarios, esto complica la comparación entre diferentes fabricantes. Por lo tanto, todo se reduce a cómo se presenta la precisión en las hojas de datos y cómo interpretar estos datos correctamente. Un error del 0,5%, después de todo, puede ser tan preciso como el 0,1%; es solo una cuestión del método adoptado para determinar esa precisión.

Valores de precisión para transmisores de presión: descripción general

El valor de precisión más ampliamente aplicado es la no linealidad . Esto representa la mayor desviación posible de la curva característica de una línea de referencia dada. Para determinar esto último, hay tres métodos disponibles: Ajuste del punto final, Mejor ajuste en línea recta (BFSL) y Mejor ajuste hasta cero. Todos estos métodos conducen a resultados diferentes.

El método más fácil de entender es el ajuste del punto final. En este caso, la línea de referencia pasa por el punto inicial y final de la curva característica. El ajuste BSFL, por otro lado, es el método que da como resultado los valores de error más pequeños. Aquí la línea de referencia se posiciona de manera que las desviaciones máximas positivas y negativas sean iguales en grado.

El método Best Fit Through Zero, en términos de resultados, se sitúa entre los otros dos métodos. Por lo general, se debe consultar directamente cuál de estos métodos aplican los fabricantes, ya que esta información a menudo no se indica en las hojas de datos. En STS, generalmente se adopta la curva característica de acuerdo con el ajuste Best Fit Through Zero.

Los tres métodos en comparación:

El error de medición es el valor más fácil de entender para los usuarios con respecto a la precisión de un sensor, ya que se puede leer directamente de la curva característica y también contiene los factores de error relevantes a temperatura ambiente (no linealidad, histéresis, no repetibilidad, etc.). El error de medición describe la mayor desviación entre la curva característica real y la línea recta ideal. Dado que el error de medición devuelve un valor mayor que la no linealidad, los fabricantes no suelen especificarlo en las hojas de datos.

Otro valor de precisión también aplicado es la precisión típica . Dado que los dispositivos de medición individuales no son idénticos entre sí, los fabricantes establecen un valor máximo que no se superará. Por lo tanto, no todos los dispositivos lograrán la “precisión típica” subyacente. Sin embargo, se puede suponer que la distribución de estos dispositivos corresponde a 1 sigma de la distribución gaussiana (es decir, alrededor de dos tercios). Esto también implica que un lote de sensores es más preciso de lo indicado y otro lote es menos preciso (aunque no se excederá un valor máximo particular).

Por paradójico que parezca, los valores de precisión en realidad pueden variar en precisión. En la práctica, esto significa que un sensor de presión con un error del 0,5% en la no linealidad máxima según el ajuste del punto final es exactamente tan preciso como un sensor con un error del 0,1% de no linealidad típica según el ajuste BSFL.

Error de temperatura

Los valores de precisión de no linealidad, precisión típica y error de medición se refieren al comportamiento del sensor de presión a una temperatura de referencia, que suele ser de 25 ° C. Por supuesto, también hay aplicaciones donde pueden ocurrir temperaturas muy bajas o muy altas. Debido a que las condiciones térmicas influyen en la precisión del sensor, el error de temperatura debe incluirse adicionalmente. Puede encontrar más información sobre las características térmicas de los sensores de presión piezorresistivos aquí .

Precisión en el tiempo: estabilidad a largo plazo

Las entradas de precisión en las hojas de datos del producto proporcionan información sobre el instrumento al final de su proceso de producción. A partir de este momento, la precisión del dispositivo puede verse alterada. Esto es completamente normal. Las alteraciones a lo largo de la vida útil del sensor se suelen especificar como estabilidad a largo plazo. Aquí también, los datos se refieren a condiciones de laboratorio o de referencia. Esto significa que, incluso en pruebas exhaustivas en condiciones de laboratorio, la estabilidad a largo plazo declarada no se puede cuantificar con precisión para las condiciones reales de funcionamiento. Es necesario considerar varios factores: Las condiciones térmicas, las vibraciones o las presiones reales que se deben soportar influyen en la precisión durante la vida útil del producto.

Es por eso que recomendamos probar los sensores de presión una vez al año para verificar el cumplimiento de sus especificaciones. Es fundamental comprobar las variaciones del dispositivo en términos de precisión. Con este fin, normalmente es suficiente verificar el punto cero para ver si hay cambios mientras se encuentra en un estado sin presión. Si esto es mayor que las especificaciones del fabricante, es probable que la unidad esté defectuosa.

La precisión de un sensor de presión puede verse influenciada por una variedad de factores. Por lo tanto, se aconseja consultar previamente a los fabricantes: ¿En qué condiciones se debe utilizar el transmisor de presión? ¿Qué posibles fuentes de error pueden ocurrir? ¿Cómo se puede integrar mejor el instrumento en la aplicación? ¿Cómo se calculó la precisión especificada en la hoja de datos? De esta manera, en última instancia, puede asegurarse de que usted, como usuario, reciba el transmisor de presión que satisfaga de manera óptima sus requisitos en términos de precisión.

Compensación de temperatura: la clave de la precisión

Compensación de temperatura: la clave de la precisión

Al seleccionar el transductor de presión adecuado, el conocimiento de las temperaturas que pueden surgir es de suma importancia. Si la tecnología de medición utilizada no está adecuadamente compensada por temperatura, el resultado neto serán graves inexactitudes y otros riesgos.

Esta es la razón por la que los usuarios finales necesitan saber de antemano qué temperaturas se esperan dentro de su propia aplicación específica. Hay dos valores a considerar aquí: la temperatura del medio y la temperatura ambiente. Ambos valores son importantes. La temperatura del medio es el valor al que hace contacto el puerto de presión. La temperatura ambiente, sin embargo, es el valor que surge en el entorno que rodea la aplicación y finalmente afecta las conexiones eléctricas. Ambos valores pueden ser muy diferentes entre sí, pero cada uno también tiene consecuencias diferentes.

¿Por qué la temperatura es un factor importante?

Los materiales utilizados en los transductores de presión piezorresistivos muestran una cierta dependencia de la temperatura ( lea más sobre las características térmicas de los transmisores de presión piezorresistivos aquí ). El comportamiento de medición del transductor de presión también cambia con la temperatura. Como resultado, ahora surgirán compensaciones del cero y errores de intervalo relacionados con la temperatura. Expresado en términos simples, si se alcanza una presión de 10 bar a 25 ° C y luego por segunda vez a 100 ° C, se obtendrán diferentes valores de medición. Para los usuarios que ven una hoja de datos, esto significa que los valores de precisión excelentes son realmente de poca utilidad cuando la compensación de temperatura en sí misma sigue siendo insuficiente.

Además de evitar errores de medición graves, la funcionalidad mecánica del instrumento de medición también depende de la temperatura existente. Esto afecta principalmente a componentes como las conexiones eléctricas y los cables utilizados para la transmisión de valores medidos. Muy pocos de los materiales estándar pueden soportar temperaturas alrededor de los 100 ° C, aunque solo por encima de ellos. Los enchufes de cable y los cables mismos pueden derretirse o incluso incendiarse aquí. Además de la precisión de la medición, la temperatura también influye en la seguridad operativa.

Afortunadamente, los usuarios no tienen que vivir con estos riesgos, ya que los transductores de presión se pueden optimizar para diferentes condiciones de temperatura, por un lado mediante compensación de temperatura y, por otro, utilizando elementos de refrigeración adicionales y materiales particularmente resistentes al calor.

Se pueden evitar los errores de temperatura

Los fabricantes de sensores de presión emplean compensación de temperatura. Los productos de STS, por ejemplo, están optimizados de serie para temperaturas de funcionamiento de -0 ° C a 70 ° C. Cuanto más se desvía la temperatura de estos valores, mayor es la inexactitud de la medición. Un instrumento de medición optimizado para un rango de 0 ° C a 70 ° C pero utilizado a temperaturas de alrededor de 100 ° C ya no alcanzará los valores de precisión especificados. En este caso, se debe implementar un sensor, que en realidad se compensa con temperaturas de alrededor de 100 ° C.

Hay dos formas de compensación de temperatura:

  • Compensación pasiva: las resistencias dependientes de la temperatura se activan en el puente de Wheatstone
  • Compensación activa (compensación polinomial): se alcanzan varias presiones a temperaturas crecientes dentro de un gabinete de calefacción. A continuación, se comparan con los valores de un estándar de calibración . Los coeficientes de temperatura determinados a partir de esto se introducen a continuación en la electrónica del transmisor de presión para que los errores de temperatura en la práctica real puedan ahora compensarse “activamente”.

La compensación de temperatura activa sigue siendo el método preferido porque conduce a los resultados más precisos.

La compensación de temperatura en sí misma, por otro lado, tiene sus limitaciones. Como se mencionó anteriormente, la temperatura no solo afecta la precisión de un transmisor de presión. Los componentes mecánicos de la celda de medición también sufren a temperaturas superiores a 150 ° C. A estas temperaturas, los contactos y las uniones pueden aflojarse y el propio sensor sufre daños. Si se esperan temperaturas del medio excepcionalmente altas, se requerirán elementos de enfriamiento adicionales para garantizar la funcionalidad del sensor.

Elementos refrigerantes a temperaturas del medio muy altas

Para proteger el transmisor de presión de temperaturas muy altas, hay cuatro variantes que pueden emplearse dependiendo de la aplicación y la temperatura involucrada.

Variante A: temperaturas del medio de alrededor de 150 ° C

En esta variante, un elemento de aleta de refrigeración está integrado entre la celda de medición y el amplificador. Aquí se trata de separar la electrónica de la aplicación real, de modo que estos no se vean dañados por las temperaturas elevadas.

Variante B: Temperaturas superiores a 150 ° C

Si el medio está muy caliente, se enrosca un elemento de refrigeración delante del puerto de presión (por ejemplo, aletas de refrigeración que se pueden atornillar por ambos lados). De este modo, el puerto de presión entra ahora en contacto únicamente con el medio enfriado. Estas aletas de enfriamiento conectadas hacia adelante no tienen ningún efecto en la precisión del sensor. Sin embargo, si el medio fuera vapor extremadamente caliente, se utilizaría un sifón como elemento de enfriamiento.

Variante C: Temperaturas extremadamente altas (hasta 250 ° C)

Cuando la temperatura del medio es extremadamente alta, ahora se puede usar un sistema de aislamiento orientado hacia adelante que incorpore una sección de enfriamiento. Esta variante, sin embargo, tiene un tamaño bastante grande y afecta negativamente la precisión.

Transductor de presión con seccionador delantero y sección de enfriamiento para temperaturas del medio de hasta 250 ° C

Variante D: Caso especial de armario calefactor o cámara climática

Cuando las mediciones de presión son necesarias dentro de un gabinete de calentamiento a temperaturas ambiente de hasta 150 ° C, la electrónica del transmisor de presión no puede exponerse a estas temperaturas sin sufrir daños. En este caso, solo la celda de medición (con puerto de presión y carcasa de acero inoxidable) se encuentra dentro del gabinete, con esto conectado a la electrónica remota fuera del gabinete (también alojada en una carcasa de acero inoxidable) a través de un cable FEP de alta temperatura.

En resumen: la consulta es el rey

La precisión de los sensores de presión piezorresistivos está influenciada por las condiciones de temperatura. Las temperaturas que actúan sobre el puerto de presión se pueden compensar de forma pasiva o activa de modo que el sensor de presión utilizado cumpla con los requisitos de precisión en el rango de temperatura previsto. Además, también debe tenerse en cuenta la influencia de la temperatura ambiente en los componentes mecánicos del instrumento de medición. Utilizando elementos de refrigeración montados en la parte delantera y materiales resistentes al calor, esto también se puede controlar. Por lo tanto, los usuarios siempre deben confiar en el asesoramiento integral ofrecido por el fabricante y asegurarse de que los transductores de presión disponibles se puedan optimizar para sus propias aplicaciones específicas.