Control de nivel de llenado confiable en la minería del carbón

Control de nivel de llenado confiable en la minería del carbón

Las explotaciones mineras y los pozos a cielo abierto son bien conocidos por sus duras condiciones de trabajo. Esto se aplica igualmente a la tecnología implementada. Por esta razón, se requieren instrumentos de medición duraderos y confiables para monitorear las aguas subterráneas.

El diez por ciento de los depósitos de carbón en todo el mundo se encuentran en Australia. Como principal exportador de carbón, la minería del carbón es uno de los factores económicos más importantes de ese continente. Sin embargo, la extracción de la materia prima no está exenta de peligros. El operador de un australiano a cielo abierto se acercó a STS mientras buscaban un transmisor de presión para monitorear el nivel de llenado a profundidades de hasta 400 metros.

Las operaciones mineras tienen una gran influencia sobre las aguas subterráneas. Los acuíferos que rodean la mina de carbón se drenan, lo que conduce al hundimiento del cono de depresión. Este hundimiento altera las condiciones hidrológicas naturales subterráneas al crear caminos de menor resistencia. Esto conduce a que el agua penetre en los trabajos subterráneos y a cielo abierto. Como resultado, el agua que ingresa constantemente debe bombearse continuamente fuera del pozo para garantizar una extracción suave y segura de la materia prima.

Para controlar el nivel del agua subterránea y las bombas utilizadas para el drenaje, los operadores de la a cielo abierto necesitaban un transmisor de presión para monitorear el nivel de llenado de acuerdo con sus requisitos. Se estipuló un rango de presión de 0 a 40 bar (400 mH2O) de presión ambiental, así como una longitud de cable de 400 metros. La solución ofrecida por STS en ese momento, el ATM.ECO/N/EX, solo leía a 25 bar y tenía una longitud de cable de 250 metros.

Pero dado que STS está especializado en soluciones de medición de presión específicas para el cliente, este desafío no fue un gran obstáculo. En poco tiempo, se desarrolló el transmisor de presión a prueba de fallos ATM.1ST / N / Ex para nivel de llenado, que cumple con precisión los requisitos de presión y está equipado con un cable de Teflon® de 400 metros de longitud. También es convincente por su precisión de solo 0,1%. STS decidió desarrollar el nuevo transmisor de presión para un cable de Teflon®, un prensaestopas sellado y un tubo de aireación abierto (PUR es demasiado blando para esto). Además, también hay un lastre atornillado para asegurar una posición de medición recta y estable. El alivio de tensión de acero inoxidable, que también se puede atornillar, ayuda a aliviar la tensión en el cable eléctrico. Como indica la designación del dispositivo, también lleva la certificación EX para su uso en áreas explosivas.

ATM.1ST / N / Ex con alivio de tensión (izquierda) y contrapeso (derecha), cada uno atornillable.

Siendo un experto en transmisores de presión específicos del cliente, STS pudo suministrar el ATM.1ST / N / Ex en menos de tres semanas.

Resumen de las características del ATM.1ST / N / Ex:

  • Rango de presión: 1… 250 mH2O
  • Precisión: ≤ ± 0,1 / 0,05% FS
  • Error total: ≤ ± 0,30% FS (-5… 50 ° C)
  • Temperatura de funcionamiento: -5… 80 ° C
  • Temperatura del medio: -5… 80 ° C
  • Señal de salida: 4… 20 mA
  • Materiales: acero inoxidable, titanio
  • Compensación electrónica
  • Conexiones de proceso comunes disponibles
Monitoreo de nivel hidrostático de tanques en base piezorresistiva

Monitoreo de nivel hidrostático de tanques en base piezorresistiva

La medición de la presión hidrostática es uno de los métodos más confiables y simples para monitorear el nivel de llenado en tanques que transportan líquido. A continuación, explicamos cómo funciona el monitoreo de nivel hidrostático y qué deben considerar los usuarios aquí.

En la medición de nivel hidrostático, se debe medir el nivel de llenado de un líquido en un recipiente. En este caso, se mide la fuerza del peso que actúa sobre el transductor de presión instalado en el fondo del contenedor. La fuerza de peso en este contexto se denomina columna de líquido. Aumenta en proporción al nivel de llenado y actúa como presión hidrostática en el instrumento de medición. La gravedad específica del fluido siempre debe tenerse en cuenta en el monitoreo del nivel hidrostático. Por tanto, la altura de llenado se calcula con la siguiente fórmula:

h = p / sg

En esta fórmula, h representa la altura de llenado, p la presión hidrostática en la base del tanque y sg es la gravedad específica del líquido.

La cantidad real de fluido no juega ningún papel en la monitorización del nivel hidrostático, ya que solo la altura de llenado es decisiva. Esto significa que la presión hidrostática es idéntica en un tanque de 200 litros que se estrecha hacia su base y en un tanque de lados rectos que contiene 150 litros de líquido, siempre que el líquido y la altura de llenado sean idénticos (3 metros, por ejemplo).

La aplicación más simple de la medición de la presión hidrostática es cuando el líquido en cuestión es agua, ya que aquí se puede descartar por completo la gravedad específica. Cuando se trata de un fluido que no es agua, el transmisor de presión debe escalarse correspondientemente para compensar la gravedad específica de ese líquido. Una vez hecho esto, se puede determinar el nivel de llenado, como con el agua, mediante la presión hidrostática en el fondo del tanque. Se vuelve más complicado cuando se utilizan diferentes líquidos en un solo tanque. En este caso, no solo se debe medir la presión hidrostática en el fondo del tanque, sino también la gravedad específica del fluido respectivo. Dejaremos de lado el último caso en este punto y en su lugar consideraremos la medición de la presión hidrostática tanto en tanques cerrados como abiertos.

Medición de presión hidrostática en tanques abiertos y cerrados

Con tanques abiertos, no importa si están sobre el suelo o dentro de él, siempre que tengan una abertura que proporcione una presión de aire equilibrada dentro y fuera del tanque. La medición de la presión hidrostática se puede realizar sin más ajustes en el fondo del tanque. Si la medición en el fondo del tanque no es posible, el nivel de llenado también se puede encontrar por medio de una sonda sumergible , que se alimenta al tanque con un cable desde arriba.

En tanques cerrados, a menudo prevalecen presiones de gas más altas que en la atmósfera que rodea el tanque. Esta capa de gas sobre el líquido aumenta la presión sobre el propio líquido. Como resultado, el líquido puede fluir más rápidamente y también hay menos pérdidas debido a la evaporación. Por lo tanto, los tanques sellados al aire ambiente se utilizan frecuentemente en las industrias petrolera y química. La capa de gas que empuja el líquido hacia abajo también actúa indirectamente sobre el transductor de presión en el fondo del tanque y, por lo tanto, debe tenerse en cuenta para determinar el nivel de llenado correcto (un nivel de llenado superior al real se indicaría mediante este presión). En contenedores cerrados, por lo tanto, deberían medirse dos presiones: la presión del gas y la presión en el fondo del tanque. La presión hidrostática del fluido resulta de la diferencia entre la presión de gas medida y la presión medida en la base. Esta diferencia se puede convertir en una indicación del nivel de llenado del tanque. Para este tipo de aplicación, generalmente se utiliza un sensor de presión diferencial.

Observaciones finales

En el control del nivel hidrostático de los tanques, siempre se deben considerar dos factores: el tipo de fluido y el tipo de tanque. La aplicación más sencilla sería la monitorización de los niveles de agua en tanques abiertos, ya que no es necesario realizar ajustes para esta constelación. Sin embargo, si se trata de un líquido diferente, entonces también debe tenerse en cuenta la gravedad específica de ese líquido. Además, debe seleccionarse un instrumento de medición que pueda soportar las propiedades del medio en cuestión. Mientras que para la mayoría de los líquidos el acero inoxidable es suficiente como material de carcasa, los medios altamente corrosivos también pueden requerir diferentes materiales.

Medición de presión hidrostática con sensores de nivel piezorresistivos

Medición de presión hidrostática con sensores de nivel piezorresistivos

Ya sea como dador de vida, un peligro para la vida o simplemente un refrigerio en el verano, el elemento agua determina la vida diaria en la tierra de muchas maneras. Debido a su gran importancia, un monitoreo confiable de este elemento se vuelve esencial.

Lo que no se puede medir tampoco se puede gestionar de manera eficiente. Desde el suministro de agua dulce, el tratamiento de agua potable, el almacenamiento y la medición del consumo, hasta el tratamiento de aguas residuales y la hidrometría, no será posible trabajar y planificar de manera eficiente sin los parámetros de entrada correctos. Ahora hay disponible una gama de dispositivos y procesos para capturar la compleja infraestructura hidrométrica actual. El clásico en la medición del nivel del agua es sin duda el indicador de nivel, para el que se debe aplicar una precisión de +/- 1 cm y que, por supuesto, sigue funcionando de forma completamente “analógica”, teniendo que ser inspeccionado visualmente y prescindiendo de la transmisión electrónica de datos. . Hoy en día, instrumentos mucho más avanzados y precisos proporcionan transmisión remota de los datos medidos, incluidos sensores de presión piezorresistivos para medir el nivel del agua tanto en aguas subterráneas como superficiales.

Medición de nivel con sensores de presión

Los sensores de presión para la medición de nivel se instalan en la parte inferior del cuerpo de agua a monitorear. A diferencia de los indicadores de nivel, generalmente no es posible leerlos sin mojarse. Esto tampoco es necesario, ya que los sensores de nivel piezorresistivos se desarrollaron para cumplir con los requisitos actuales de automatización y control de procesos. No hace falta decir que los niveles de agua se pueden medir sin intervención humana, lo que hace posible el monitoreo continuo en lugares de difícil acceso en primer lugar.

Los sensores de nivel hidrostático miden la presión hidrostática en el fondo del cuerpo de agua, donde la presión hidrostática permanece proporcional a la altura de la columna de líquido. Además, depende de la densidad del líquido y de la fuerza gravitacional. Según la ley de Pascal, esto da como resultado la siguiente fórmula de cálculo:

p (h) = ρ * g * h + p 0

p (h) = presión hidrostática
ρ = densidad del líquido
g = fuerza gravitacional
h = altura de la columna de líquido

Consideraciones importantes para una monitorización de nivel sin problemas

Debido a que los sensores de nivel piezorresistivos se colocan en el fondo del cuerpo de agua, luego se protegen de las influencias de la superficie. Ni la espuma ni los restos flotantes pueden influir ahora en las mediciones. Pero, por supuesto, tienen que adaptarse a las condiciones submarinas esperadas. Para agua salada, por ejemplo, se prefiere un sensor de nivel con una carcasa de titanio. Sin embargo, si se esperan efectos galvánicos, la mejor opción sería un dispositivo de medición de PVDF. En la mayoría de las aguas dulces, el acero inoxidable de alta calidad será suficiente. Y, por último, una conexión a tierra suficiente de los sensores de nivel es esencial para evitar daños por rayos, por ejemplo ( lea más sobre este tema aquí ).

Sensores de nivel modernos: todos los datos de un solo dispositivo

Los sensores de nivel piezorresistivos se pueden utilizar para el control de nivel en aguas abiertas como lagos, en presencia de agua subterránea y también en tanques cerrados. En aguas abiertas, se utilizarán sensores de presión relativa. Con estos dispositivos, la compensación de la presión del aire es proporcionada por un capilar dentro del cable del sensor de presión. Un sensor de presión diferencial se usa normalmente en tanques, ya que también se debe tener en cuenta la superposición de gas que presiona el líquido ( lea más sobre este tema aquí ).

Debido a que los sensores de nivel piezorresistivos son en gran medida autosuficientes y también pueden optimizarse para presiones muy altas, las mediciones a grandes profundidades ahora se convierten en una posibilidad. En teoría, apenas existen límites para esta profundidad, solo que el cable del sensor de presión debe ser lo suficientemente largo.

Figura 1: Ejemplos de sensores de nivel para medición de presión hidrostática

Aparte del hecho de que apenas existen límites de profundidad, estos modernos instrumentos de medición también son extremadamente versátiles. Después de todo, no es solo el nivel de un cuerpo de agua lo que nos interesa. La calidad del agua también es de gran importancia para el control de las aguas subterráneas. La pureza de un depósito de agua subterránea, por ejemplo, también se puede determinar por su conductividad, donde cuanto menor sea la conductividad, más pura será el agua ( lea más sobre conductividad aquí ). Además de los sensores de conductividad, las sondas de nivel hoy en día también están disponibles con medición de temperatura integrada. Los sensores de nivel piezorresistivos proporcionan una amplia gama de tareas de monitoreo y son sin duda preferibles al indicador de nivel en la mayoría de los casos.

Monitoreo de nivel para control de bombas en tanques de aguas pluviales y aguas residuales

Monitoreo de nivel para control de bombas en tanques de aguas pluviales y aguas residuales

El suministro de agua y la eliminación de aguas residuales varían según las condiciones locales. En los edificios belgas, muchos sótanos están situados a mayor profundidad que el sistema de alcantarillado. Por lo tanto, la eliminación de aguas residuales aquí debe ser regulada por bombas.

La empresa belga Pumptech proporciona a los propietarios y cuidadores potentes bombas industriales, a través de las cuales se regula parcialmente la circulación del agua dentro de los edificios. Esto es esencial en varias regiones de Bélgica, porque los sótanos de los edificios a menudo se encuentran debajo del sistema de alcantarillado.

Sin embargo, dado que estas aguas residuales no pueden fluir directamente al sistema de alcantarillado, se almacenan temporalmente dentro de los tanques. El agua de lluvia también se recoge a menudo en estos edificios y luego se utiliza para instalaciones sanitarias. El agua de lluvia que golpea el techo se introduce en tanques subterráneos donde permanece disponible para su uso posterior. Como agua residual, finalmente fluye a los tanques de aguas residuales separados, desde donde luego se bombea al sistema de alcantarillado.

Ya sea en estos tanques de aguas residuales o pluviales, la monitorización de los niveles es fundamental para un funcionamiento regulado de las bombas. Para ello, Pumptech ha estado utilizando ATM.ECO/Nsondas sumergibles desde hace 15 años. Originalmente, el control de nivel se realizaba aquí mediante interruptores de flotador. Con el tiempo, resultó que esta era una solución insatisfactoria, especialmente en lo que respecta a los tanques de aguas residuales. La gran desventaja de los interruptores de flotador en comparación con las sondas de inmersión es que se ensucian rápidamente debido a las impurezas que flotan en la superficie del agua y entonces ya no funcionarán correctamente. Esto puede tener consecuencias de gran alcance, ya que las bombas mismas se controlan midiendo el nivel de llenado. Por lo general, hay dos o tres bombas dentro de los tanques. Cuando se excede un nivel predeterminado, la primera bomba comienza a funcionar y la segunda bomba se activa en el siguiente nivel fijo. Las alarmas también se pueden activar si se alcanzan ciertos límites

Las sondas sumergibles, que generalmente se instalan en el fondo del tanque , no son particularmente susceptibles a la contaminación por agua. Una vez que Pumptech había probado varios proveedores, su elección finalmente recayó en la sonda de nivel analógica ATM.ECO/N de STS, ya que estos cumplían mejor con sus requisitos en comparación con los competidores en lo que respecta a la estabilidad requerida a largo plazo. Desde entonces, estos controles de bombas han estado funcionando sin incidentes.

Las sondas de inmersión ATM.ECO/N cuentan con una membrana completamente sellada de acero inoxidable de alta calidad. Un filtro de humedad en el cable de conexión de presión también evita que el agua u otros contaminantes entren en su celda de medición. Otra ventaja es el tiempo de reacción mucho mejor en comparación con la solución de interruptor de flotador anterior, que ahora permite a los usuarios ver de inmediato lo que está sucediendo dentro de los tanques.

Puede encontrar la hoja de datos de la sonda de nivel ATM.ECO/N aquí.

Sensores de nivel de puesta a tierra para protección contra sobretensiones

Sensores de nivel de puesta a tierra para protección contra sobretensiones

Al controlar los niveles de llenado, asegúrese de que los sensores de nivel estén suficientemente conectados a tierra para evitar daños graves. Si esto es inadecuado o ausente por completo, puede dar lugar a tres efectos graves.

  1. observar en aplicaciones a largo plazo. Las diferencias de voltaje entre el sensor y el fluido circundante provocan corrosión electrolítica. La carcasa de metal se perfora gradualmente y el líquido penetra en la propia carcasa. El daño a la electrónica será la consecuencia aquí. Este proceso se puede observar tanto en aguas abiertas como en el monitoreo del nivel de llenado dentro de los recipientes, donde la diferencia de potencial entre el sensor de nivel, el medio y la pared del recipiente puede causar corrosión electroquímica.
  2. Los sensores de nivel de llenado se conectan al sistema de control mediante cables o se conectan a sistemas telemétricos. A través de estas conexiones, los voltajes atmosféricos se pueden transmitir al sensor. En este caso, el resultado final será un sobreesfuerzo de la electrónica.
  3. Si cae un rayo cerca de la sonda de nivel, existirá una diferencia de voltaje muy alta a corto plazo. El aumento de voltaje en el agua buscará el camino más corto a tierra aquí a través del sensor de nivel.

Protección contra rayos y puesta a tierra de los sensores de nivel

Para proteger los sensores de nivel de estos efectos, se pueden equipar con protección contra rayos. Para ello, se integra una protección de sobretensión transitoria en la sonda de nivel, que reaccionará a diferencias de voltaje que aumentan rápidamente. Si ocurre una sobretensión repentina, el pararrayos activará un cortocircuito dentro de los circuitos eléctricos para canalizar esa sobretensión a tierra. Este protector contra sobretensiones normalmente opera en un estado no conductor, pero conduce transitorios de voltaje para que puedan fluir a tierra sin causar ningún daño. Sin embargo, debe tenerse en cuenta que con un rayo directo a la sonda de inmersión, incluso la protección contra sobretensión no puede evitar daños.

Además, una conexión a tierra que debe tener una resistencia de menos de 100 ohmios se utiliza para la conexión a tierra. Para el control del nivel de llenado en tanques de transporte de líquido hechos de metal o incluso plástico, se debe tener cuidado de que todos los componentes metálicos aislados estén conectados entre sí a tierra. En aguas abiertas, generalmente se requiere un mayor esfuerzo para crear una baja resistencia al suelo. Por esta razón, a menudo se instala una rejilla de puesta a tierra en el suelo para estas aplicaciones.

En general, se recomienda a los usuarios que discutan un concepto de puesta a tierra con los fabricantes con respecto a su aplicación respectiva.