Sensores de presión en el automovilismo: donde una fracción de un caballo de fuerza es decisiva

Sensores de presión en el automovilismo: donde una fracción de un caballo de fuerza es decisiva

“¡El ganador se lo lleva todo!” El mundo del automovilismo se divide en ganadores y perdedores, y el piloto exitoso disfruta de la ducha de champán. El resultado preliminar, sin embargo, tiene lugar en el banco de pruebas de desarrollo del motor, con sensores de presión de alto rendimiento que representan la ventaja competitiva decisiva.

STS suministra sensores de presión a clientes del mundo del automovilismo, incluidos los participantes de la Fórmula 1 y NASCAR. Ambas series de carreras, a pesar de todas sus diferencias, tienen una cosa en común. Cada caballo de fuerza cuenta y representa la ventaja decisiva en la pista. Cuando cada décima de caballo de fuerza debe ser obtenida de un análisis extenso en bancos de pruebas de motores, los resultados finales deben ser absolutamente confiables hasta el último decimal.

Tecnología de medición de presión en el desarrollo de motores de Fórmula 1

El reglamento actual de motores en la Fórmula 1 se introdujo en 2014. Se impulsan motores en V de seis cilindros, 1,6 litros de cilindrada y un solo turbocompresor . Las velocidades de revoluciones alcanzan hasta 15.000 min −1 . El Sistema de recuperación de energía cinética (KERS), un sistema eléctrico para recuperar energía al frenar introducido por primera vez en 2009, ahora ha sido reemplazado por el Sistema de recuperación de energía (ERS). En la Fórmula 1 moderna, los motores implicados son, por tanto, de tipo híbrido. El futuro de la Fórmula 1, por esta razón, hace tiempo que se convirtió en el presente. La serie de carreras quizás más exitosa en todo el mundo es también un laboratorio de pruebas para la carretera. Desde frenos de disco hasta diagnósticos por computadora, muchas tecnologías que ahora se encuentran en el tráfico cotidiano tienen su origen en los centros de desarrollo de la Fórmula 1.

Las regulaciones de motor vigentes, que delimitan uniformemente los parámetros para todos los equipos, hacen que la investigación exhaustiva en el banco de pruebas sea esencial para obtener la ventaja decisiva. Cada caballo de fuerza cuenta. En comparación con las pruebas para vehículos en tráfico rodado normal, se aplican diferentes requisitos, hasta cierto punto. Las presiones del aceite y del agua son más altas, al igual que las temperaturas que surgen. Cuando el objetivo es mejorar el ahorro de combustible y aumentar el rendimiento, es esencial realizar pruebas exhaustivas en condiciones de carrera. Además, la precisión de los resultados medidos en el rango de temperatura requerido es de gran importancia. En la Fórmula 1, los grandes saltos en términos de caballos de fuerza a menudo no son el caso: las mejoras incluso en las regiones decimales son motivo de celebración en este elevado nivel de rendimiento.

A la luz de estos desafíos, un conocido equipo de carreras de Fórmula 1 se acercó a STS, ya que la tecnología de sensores empleada hasta ahora no cumplía con sus altos requisitos. Los instrumentos de medición utilizados eran demasiado grandes y pesados. Sin embargo, aún más grave fue el problema de que se tuvo que incorporar tecnología de enfriamiento adicional en el banco de pruebas, ya que las temperaturas del sensor aumentarían rápidamente por encima del máximo. Por tanto, los resultados medidos en este escenario no tendrían ningún valor.

El objetivo de los desarrolladores era adquirir sensores de presión que permitieran estandarizar y hacer obsoletos los elementos de refrigeración adicionales. Los temas de peso y tamaño también juegan un papel, ya que estos factores influyen en el rendimiento del automóvil a toda velocidad.

STS proporcionó al equipo de carreras un nuevo sensor de la serie ATM , disponible en el mercado a partir del otoño de este año. Este sensor puntuó no solo en la precisión deseada en el rango de temperatura requerido, sino que también proporcionó una ventaja decisiva adicional que podría optimizar de manera duradera el desarrollo del motor. Con los sensores usados ​​anteriormente de otro fabricante, hubo fallas al cambiar a los sistemas híbridos empleados desde 2014. Los resultados fueron que el banco de pruebas se apagaba y las mediciones a más largo plazo eran prácticamente imposibles. Los sensores ATM de STS son a prueba de fallas y, por lo tanto, permiten realizar pruebas exhaustivas en el camino hacia el podio de la victoria.

Tecnología de medición de presión en el desarrollo de motores NASCAR

Aunque los motores híbridos no están integrados en los stock cars de NASCAR, aún se requieren pruebas exhaustivas para lograr el rendimiento óptimo. También en este deporte, un conocido fabricante de motores ha optado por la tecnología de medición de presión de STS. Durante extensas pruebas, unos 200 transmisores de presión ATM.1ST han estado controlando las presiones del aceite, el agua, el combustible y el aire. Desde las presiones de aire que llegan al motor hasta las mejoras en el flujo de aceite, el objetivo es examinar con precisión varios factores para lograr incluso el más mínimo aumento en el rendimiento (aquí se trata de aproximadamente 900 CV). Al igual que con la Fórmula 1, se requiere la máxima precisión. ¡El alcance aquí equivale a solo una décima parte de un caballo de fuerza!

La elección del fabricante fue para el transmisor de presión ATM.1ST , ya que no tiene rival en sus características de rendimiento requeridas.

  • La modularidad de los sensores STS también permite al fabricante conectar un adaptador de presión especial.
  • Un error total de ≤ ± 0,30% FS permite análisis significativos para mejorar el rendimiento del motor.
  • La estabilidad a largo plazo minimiza considerablemente la necesidad de calibración.
  • El rango de medición de presión de 100 mbar… 1.000 bar se adapta bien a las presiones que surgen durante el desarrollo del motor.
  • La excelente compensación de temperatura permite obtener resultados precisos en un amplio rango de temperaturas, un criterio decisivo para las temperaturas en aumento pronunciado durante las pruebas de rendimiento en estos niveles más altos.

Ya sea en la Fórmula 1 o en NASCAR, el camino hacia el podio de la victoria pasa por los bancos de pruebas de motores. En el campo de los deportes de motor de alto rendimiento en particular, se requieren sensores de alta precisión para monitorear todos los datos importantes, desde las presiones de aceite y agua hasta las presiones de aire y combustible. Además de la precisión, la capacidad a prueba de fallas también juega un papel importante para poder realizar pruebas esenciales a largo plazo que producen resultados confiables.

Los motores GDI están bajo presión para reducir las emisiones de partículas y mejorar el rendimiento.

Los motores GDI están bajo presión para reducir las emisiones de partículas y mejorar el rendimiento.

Con unos 40 millones de motores de gasolina de inyección directa (GDI) que se espera que se vendan para el 2025, puede resultar sorprendente saber que estas unidades emiten partículas finas más peligrosas que un motor de inyección de combustible (PFI) de puerto, o incluso el último motor pesado. diesel de servicio equipados con un filtro de partículas.

El aumento potencial en el mercado significa que las emisiones de partículas GDI, aunque bajas en comparación con las de un diésel sin filtrar, ahora están bajo el escrutinio de los reguladores y fabricantes.

Para reducir estas emisiones  y mejorar el rendimiento general, los ingenieros están estudiando nuevos diseños de combustión y conceptos de ingeniería, incluido el aumento de la presión del combustible, los combustibles alternativos y el control de las emisiones de escape.

Según Matti Maricq, líder técnico en ingeniería química y emisiones después del tratamiento en el Centro de Investigación e Innovación de Ford en Dearborn, la inyección de combustible directamente en el cilindro permite una explosión de combustión limpia que desperdicia poco combustible y proporciona mayor potencia.

Durante este proceso, la gasolina se rocía directamente donde la cámara de combustión está más caliente (en lugar de en la entrada de aire), lo que permite una combustión más completa, uniforme y delgada.

Los GDI de combustión más limpia emiten partículas nocivas.

Pero debido a la volatilización incompleta del combustible, las zonas parcialmente ricas en combustible y la “humectación” de las superficies de los pistones y cilindros, los motores GDI producen partículas no deseadas. La mayoría de las emisiones ocurren típicamente durante el arranque en frío y condiciones transitorias de carga alta durante la fase de calentamiento, pero esto puede variar según la carga, la fase del ciclo de conducción y las demandas del conductor.

Si bien los críticos “ecológicos” siguen siendo escépticos sobre los llamados métodos de “gestión del motor”, creyendo que no son fiables en comparación con los filtros de escape, la mayoría de los fabricantes de equipos originales y proveedores de componentes esperan que el diseño de combustión y los cambios de ingeniería resulten más rentables y, finalmente, igualmente eficaces.

El desarrollo actual indica que una mayor presión de combustible, posiblemente de hasta 40 MPa, junto con los nuevos inyectores de ultraprecisión mejorarán enormemente los futuros sistemas GDI. Para optimizar aún más el sistema, los ingenieros también continuarán mejorando la sincronización, la orientación, la medición y la atomización de los inyectores.

En un estudio reciente, publicado por la SAE, se estableció que un aumento en la presión del sistema de combustible mejoró la homogeneidad de la mezcla y redujo la llama de difusión de la punta, lo que redujo significativamente las emisiones de partículas bajo combustión homogénea en un motor GDi.

Además, como resultado del movimiento mejorado de la carga de admisión a presiones de combustible de entre 20 MPa y 40 MPa, se logró una reducción adicional de las emisiones de partículas.

Como indican los datos de combustión, un aumento en la presión del combustible tiene un impacto significativo en la reducción de las emisiones de combustión, así como en la mejora del consumo de combustible.

Sin embargo, para que un sistema GDi funcione de manera óptima, es importante que, durante la fase de diseño y prueba, la presión del combustible en el riel común (CR) se mida correctamente para que la ECU pueda mapearse en consecuencia.

La medición de la presión del combustible CR es clave para reducir las emisiones de partículas.

La presión de inyección directa se mide con sensores y las señales se utilizan para determinar la velocidad y / o el volumen de la bomba.

La mayoría de los sistemas de inyección directa utilizan sensores de presión piezorresistivos en el lado bajo del sistema. El elemento de chip de silicona genera un voltaje eléctrico medible cuando se aplica presión, que aumenta a medida que aumenta la presión.

En el lado de alta presión, los sensores suelen utilizar una membrana metálica en un puente de resistencia. Cuando se aplica presión, el puente genera un cambio en la resistencia que resulta en un cambio en el voltaje aplicado. El módulo de control electrónico (ECM) transforma el voltaje en una presión calculada, generalmente con una precisión de ± 2%.

Para mantener la presión correcta, el ECM pulsa la bomba de baja presión. El sistema normalmente tiene un regulador y no tiene líneas de retorno. Algunos sistemas incluso tienen sensores de temperatura integrados en las líneas que se utilizan para calcular la densidad del combustible para que el ajuste de combustible se pueda ajustar a la cantidad de energía en el combustible.

Para garantizar una medición precisa de la presión de la línea, es importante que se utilicen  transmisores de presión de alta precisión para mapear la presión dentro del CR en todas las condiciones de carga y motor. Cualquier error en este proceso puede resultar en una modulación incorrecta de la presión CR que a su vez puede resultar en serias anomalías, como el lavado de cilindros que puede ocurrir si la presión media CR excede la presión de diseño del inyector cuando el suministro de combustible aumenta con cargas elevadas.

Además, con la introducción del ciclo de conducción armonizado, los fabricantes de equipos originales se verán sometidos a una presión renovada para cumplir los objetivos de emisiones establecidos por los reguladores, y los motores de encendido por chispa GDI estarán a la vanguardia de una nueva generación de tecnologías ecológicas. Sin embargo, para que esta tecnología cumpla con la legislación venidera, es necesario reducir las emisiones de partículas, en gran parte mediante el control preciso de la presión del combustible CR.

El turbocompresor sucumbe a las presiones de la conservación de energía

El turbocompresor sucumbe a las presiones de la conservación de energía

Durante muchos años, los turbocompresores solo se encontraron en autos deportivos costosos y motores diesel, pero las regulaciones de emisiones cambiaron la forma en que el mundo veía la inducción forzada. Aunque en el centro todavía estaba la búsqueda para mejorar el rendimiento, ahora los fabricantes buscaban restaurar el rendimiento y la facilidad de conducción a motores de consumo de combustible reducidos. Así, en el 21 st Century, casi todo de la pequeña 999 cm 3 Ford Ecoboost a la última Ferrari de todas las nuevas tecnologías turbo brillante ganado.

Pero casi tan pronto como la tecnología se hizo realidad, parece que se volverá redundante, eclipsado por el nuevo eCharger. Audi ya lo instaló en el SQ7 de producción en serie y estará implementando la tecnología en los vehículos de producción futuros a medida que la electrificación de 48 voltios gane tracción.

La ventaja clave del sobrealimentador de accionamiento eléctrico es que, al igual que con los turbocompresores, no hay pérdidas parásitas; pero a diferencia de la mayoría de los turbo, tampoco hay retraso del turbo ni necesidad de una válvula de descarga. El potente motor eléctrico puede acelerar el impulsor a 70.000 rpm en menos de un segundo, lo que elimina el retraso del turbo.

Esto, naturalmente, mejora la capacidad de conducción y reduce el consumo y las emisiones entre un 7 y un 20 por ciento cuando el dispositivo se utiliza en un vehículo equipado con frenado regenerativo, que captura la energía cinética del automóvil y la convierte en electricidad.

La presión es clave para desbloquear el rendimiento del eCharger

Controlado electrónicamente, el eCharger se puede mapear para optimizar el rendimiento del motor mientras se maximiza la energía recuperada de los gases de escape, pero para lograr esta utopía, los ingenieros deben crear un  mapa del impulso que requiere el motor midiendo las presiones del colector en varias cargas del motor. y velocidades. Esto solo se puede hacer con la ayuda de sensores de presión de alta calidad .

Al igual que con cualquier super / turbocargador, es importante que la unidad se adapte a los requisitos del motor: si no lo hace, se dejará sin energía al motor o se producirá un consumo de energía eléctrica innecesario.

Al ser una tecnología en proceso de maduración, los ingenieros que deseen explorar los límites de los supercargadores eCharge no disponen de muchos datos de investigación y pruebas. Aunque la dinámica de fluidos y la ingeniería eléctrica pueden proporcionar una buena base sobre la que construir, sigue siendo vital que las teorías se validen en condiciones de prueba del mundo real.

Para calificar el desempeño, una vez que se ha seleccionado el eCharger de referencia, el vehículo está equipado con sensores de presión extremadamente precisos que se calibran fácilmente y brindan lecturas precisas en una amplia gama de presiones y temperaturas de refuerzo del múltiple. Estos sensores también deben ser resistentes a la vibración y la degradación química.

Tanto en el dinamómetro del motor como en las pruebas en carretera, la posición del acelerador / la velocidad del motor / la presión del aire del colector se registran continuamente para determinar la interrelación de estas entradas clave.

A partir de esta información, los ingenieros pueden verificar que se ha seleccionado la configuración correcta del cargador electrónico y, al mismo tiempo, garantizar que los controles de gestión del motor de circuito cerrado puedan responder correctamente a las variables clave.

El resultado de hacerlo bien ofrece un vehículo, como el SQ7, que tiene un rendimiento, una capacidad de conducción y un consumo de combustible asombrosos y, al mismo tiempo, cumple con las futuras regulaciones de emisiones globales.

La medición precisa de la presión es fundamental para el desarrollo seguro y rentable de vehículos de motor

La medición precisa de la presión es fundamental para el desarrollo seguro y rentable de vehículos de motor

El principio de la energía hidráulica para realizar trabajos ha existido desde la época del antiguo Egipto, pero a medida que los sistemas han evolucionado, también lo han hecho las herramientas necesarias para diseñar y desarrollar estos circuitos sofisticados, a menudo críticos.

Desde el primer manómetro inventado por Evangelista Torricelli en el siglo XVII hasta el manómetro mecánico Bourdon y finalmente hoy, el transductor de presión piezorresistivo , los desarrolladores siempre han buscado el mejor equipo para medir presiones y optimizar el diseño. Y en los últimos tiempos, los ingenieros automotrices, en particular, han llegado a confiar en estos sensores de presión precisos y de alta calidad cuando realizan pruebas y desarrollo de vehículos.

Estos transductores de presión actuales son típicamente capaz de grabar deflexiones a gran escala de aproximadamente 350 mbar a 700 bar bajo temperaturas sostenidas que van desde -40 O C a 150 ° C; y lo mejor de todo, los sensores de calidad, como los producidos por STS, son capaces de una histéresis y repetibilidad de alrededor del 0,001%.

Imagen 1: Transmisor de presión ATM.1ST de alta precisión con una precisión de hasta 0,05% FS

Los sensores de presión de alta calidad se utilizan en el desarrollo de sistemas automotrices clave.

Este nivel de repetibilidad es fundamental en el diseño y desarrollo de sistemas de refrigeración y suministro de combustible, entre otros. Durante el desarrollo, los diseñadores confían en un equipo de medición de presión estable para registrar la información con precisión, de modo que se pueda documentar el efecto de incluso los cambios de diseño más pequeños sin preocuparse de que el sensor sea incapaz de obtener resultados repetibles.

En un rediseño reciente de un sistema de enfriamiento del motor para aprovechar las pérdidas parásitas reducidas que son posibles gracias a la electrificación, el equipo de ingeniería de un OEM de lujo se enfrentó inicialmente con una caída de presión en la bomba de alrededor de 250 kPa. Antes de que fuera posible un rediseño de la nueva bomba eléctrica, era necesario registrar mediciones de presión precisas, lo que permitía a los ingenieros la oportunidad de identificar el problema. Después de estudiar los resultados registrados por la matriz de sensores de presión, se modificó el diseño, reduciendo la caída a menos de 100 kPa y recortando las pérdidas parásitas en 500 W.

Y aunque la electrificación y los controles electrónicos están desempeñando un papel cada vez más importante en los sistemas de los vehículos, todavía se confía en la presión hidráulica para garantizar el buen funcionamiento de muchos circuitos críticos.

A modo de ejemplo, durante el desarrollo de una  transmisión automática , las presiones de la línea del puerto deben medirse en tiempo real y luego compararse con las normas de diseño para confirmar que se cumplen los parámetros de diseño. Al mismo tiempo, los tiempos de turno y la calidad se miden y evalúan subjetivamente para garantizar que la capacidad de conducción y el rendimiento cumplan con los requisitos del cliente.

A pesar del valor de los sensores de presión de alta calidad para registrar datos valiosos durante las pruebas y el desarrollo, al industrializar las tecnologías futuras, estas herramientas también pueden reducir significativamente los costos de diseño.

Los sensores de presión garantizan que las tecnologías futuras estén a la altura de las expectativas.

En un intento por mejorar el rendimiento de los motores severamente reducidos, los fabricantes están aprovechando la potencia adicional que ofrece la electrificación de 48V, reemplazando el turbocompresor por un sobrealimentador eléctrico .

Al ser una tecnología en proceso de maduración, los ingenieros que deseen optimizar los supercargadores eCharge no disponen de muchos datos de investigación y pruebas. Aunque la dinámica de fluidos y la ingeniería eléctrica proporcionan una plataforma sólida desde la que construir, sigue siendo vital que las teorías se validen en condiciones de prueba del mundo real.

Para lograr esto, se deben mapear las presiones del colector para optimizar el rendimiento del motor y maximizar la energía recuperada de los gases de escape. Para esto, se requieren sensores de presión extremadamente precisos que brinden lecturas precisas en una amplia gama de presiones y temperaturas de refuerzo del colector. Estos sensores también deben ser resistentes a la vibración y la degradación química.

Y mientras los fabricantes de todo el mundo continúan investigando sobre vehículos eléctricos, varios grupos están considerando formas de aprovechar el hidrógeno para generar electricidad en lugar de depender de las baterías de almacenamiento.

Las celdas de combustible de hidrógeno que emplean membranas de intercambio de protones, también conocidas como celdas de combustible de membrana de electrolito polimérico (PEM) (PEMFC), ya han tenido una producción en serie limitada en vehículos como el Mirai de Toyota.

Aunque las celdas de combustible PEM pequeñas funcionan normalmente a una presión de aire normal, las celdas de combustible de mayor potencia, de 10 kW o más, suelen funcionar a presiones elevadas. Al igual que con los motores de combustión interna convencionales, el propósito de aumentar la presión en una pila de combustible es aumentar la potencia específica extrayendo más potencia de la celda del mismo tamaño.

Normalmente, la pila de combustible PEM funciona a presiones que van desde casi la atmosférica hasta aproximadamente 3Bar, y a temperaturas entre 50 y 90 ° C. Si bien las densidades de potencia más altas son posibles al aumentar la presión de funcionamiento, la eficiencia neta del sistema puede ser menor debido a la potencia necesaria para comprimir el aire; de ahí la importancia de equilibrar la presión con los requisitos de la celda de combustible particular.

Al igual que con las presiones de refuerzo ICE, esto solo se puede hacer tomando medidas de presión precisas utilizando sensores de presión de alta calidad. Estas medidas se comparan luego con las salidas de la pila de combustible para minimizar las pérdidas parásitas mientras se optimizan las ganancias en la salida eléctrica.

Por lo tanto, independientemente del curso que elija la industria automotriz para las tecnologías futuras, los sensores de presión precisos seguirán siendo clave para el desarrollo de vehículos seguros y eficientes.

Las fabricantes están sintiendo la presión

Las fabricantes están sintiendo la presión

Con las regulaciones de emisiones establecidas para aumentar un poco más en China, Europa y América del Norte, los fabricantes están en apuros para optimizar cada componente y función del motor para cumplir con las nuevas demandas de manera rentable.

Aunque los motores que están en desarrollo siempre se han probado para garantizar que cumplan con los requisitos de calidad más estrictos en términos de materiales, emisiones y eficiencia, existe un enfoque renovado en el desarrollo detallado para desbloquear el rendimiento que antes se había pasado por alto.

Para hacer esto, cada vez que se hace funcionar un motor en un banco de pruebas, se deben monitorear y medir todas las variables que influyen en las emisiones y el rendimiento para comprender su rendimiento individual y cómo funcionan como parte del sistema general.

Esto requiere un equipo de medición preciso y altamente confiable que proporcione lecturas precisas en las condiciones extremas que se encuentran dentro y alrededor del motor. Los sensores de esta calidad y precisión son fabricados por solo un puñado de proveedores en todo el mundo, que se destacan por la capacidad de personalizar los sensores de presión de calidad según los requisitos del cliente.

Los sensores de presión son clave para eliminar ineficiencias

STS ha desarrollado sensores de presión que cumplen con los requisitos de los diseñadores de motores de OEM, de primer nivel y especialistas en el desarrollo de motores. Con estos sensores, los clientes llevan a cabo trabajos de desarrollo y diseño que se centran principalmente en reducir las emisiones de escape y lograr una alta densidad de potencia, bajo consumo de combustible, larga vida útil y máxima fiabilidad.

Debido a que la eficiencia de un motor depende en gran medida del flujo de aire y la densidad de carga en la cámara de combustión y de cómo se utilizan los gases de escape para mejorar el par del motor, por medio de un turbocompresor, o se pueden descargar de manera eficiente, es fundamental mapear con precisión las regiones de presión clave . Estas presiones suelen ser del orden de milibares, lo que requiere una medición extremadamente precisa y muy dinámica.

Además, para obtener un análisis confiable de la distribución de presión dentro del colector de entrada, es importante tomar medidas de presión de entrada lo más cerca posible de cada válvula de entrada. Esto es para adaptarse a la geometría variable del colector que a menudo da como resultado que cada cilindro reciba una cantidad diferente de aire, lo que impacta negativamente tanto en el rendimiento como en las emisiones.

Al determinar el rendimiento del sistema de escape, la medición de la presión se vuelve bastante compleja, ya que no solo el rendimiento del escape depende de la presión, sino también de la interacción de los pulsos de los gases de escape debido al orden de encendido del motor. Los sensores de presión STS son capaces de medir estos procesos tanto en el lado de entrada como en el de salida con un alto nivel de precisión.

Los sensores robustos deben permanecer precisos en un entorno hostil

En el entorno de prueba, los sensores deben ser resistentes a los productos químicos y aceites asociados con los motores, y deben poder medir con precisión las presiones en temperaturas extremas. Además, los sensores deben funcionar de manera confiable y no verse afectados por vibraciones o fluctuaciones de voltaje.

La gama de sensores de STS también permite a los clientes tomar medidas en sistemas críticos como bombas de aceite, combustible y agua, líneas de inyectores, intercoolers e intercambiadores de calor. Todos ellos son vitales para optimizar la eficiencia del motor.

Por lo tanto, aunque los clientes y los reguladores están aumentando las demandas de motores más limpios y de mejor rendimiento, los fabricantes de equipos originales y los proveedores están bien equipados para estirar los límites e incluso superar las expectativas.

Suscríbete a nuestro boletín

Suscribase a nuestra lista de correo para recibir las últimas noticias y actualizaciones de nuestro equipo.

¡Te has suscripto satisfactoriamente!