Para optimizar la relación A / F en condiciones transitorias, los fabricantes emplean sistemas de bucle abierto y cerrado:
- Un sistema de circuito cerrado es aquel en el que una señal proporcional al A / F es generada por un sensor de oxígeno de gases de escape (EGO), también conocido como sensor Lambda, ubicado en la corriente de escape.
- Un sistema de circuito abierto o de alimentación directa controla el flujo de combustible del inyector a través de señales recibidas de un medidor de flujo de aire.
En ambos casos, las señales se retroalimentan a través de un controlador PI digital para regular el ancho del pulso de inyección de combustible. Sin embargo, estos sistemas tienen dos inconvenientes importantes:
- Debido al retardo relativamente largo inherente al ciclo de inducción-compresión-potencia-escape del motor, la retroalimentación, o la porción de circuito cerrado del sistema de control A / F, solo es completamente efectiva en condiciones de operación de estado estacionario.
- Una señal de sensor EGO confiable solo está disponible después de que el sensor se haya calentado y, por lo tanto, el control A / F de circuito cerrado no es posible inmediatamente después de arrancar el motor.
Por lo tanto, en condiciones de arranque en frío y transitorias, la parte de avance del controlador A / F es particularmente importante.
Para optimizar el A / F en todas las condiciones, los motores modernos suelen estar equipados con un sensor de presión de aire del colector (MaP) para medir la presión de aire en el colector de admisión.
El sensor MaP sabe exactamente lo que necesita el motor
El sensor MaP mide continuamente la presión de aire y envía esta información a la ECU del motor, que inserta los datos en una tabla que se utiliza para controlar el ancho de pulso del inyector y el tiempo de encendido. Estas lecturas de presión se transmiten a la ECU como señales de voltaje de salida.
Durante la fase de desarrollo, es fundamental que las presiones medidas en el colector sean precisas. Los sensores MaP de producción en serie, aunque son excelentes para alimentar señales a la ECU, a menudo tienen tolerancias más amplias de lo que se considera aceptable para el desarrollo: por lo tanto , los transmisores de presión de alta calidad , como los producidos por STS, se instalan comúnmente en conjunto con los sensores MaP de la serie durante el desarrollo. fase. Las lecturas obtenidas de estos sensores se utilizan para medir cualquier desviación o error al registrar las presiones del colector en varias aberturas del acelerador.
El proceso es bastante complejo y requiere que los voltajes de salida se midan en cientos de puntos de apertura del acelerador, para que la ECU del motor cree un mapa efectivo de los requisitos del motor.
Uso del sensor de mapa para enseñar a la ECU del motor
Durante la fase de desarrollo, utilizando un sensor MaP calibrado, la presión del colector se mide en pequeños incrementos de apertura del acelerador y los voltajes de salida se registran en cada ajuste.
En ralentí, con el acelerador parcialmente abierto, esta presión se mide a alrededor de 1/3 de la presión atmosférica, o 0.338 Bar en un motor de aspiración normal. Dado que el voltaje de salida del sensor de mapa es proporcional al aumento de presión, el voltaje de salida en reposo será aproximadamente 5/3 = 1,67 V donde la salida nominal de escala completa es 5 V.
Sin embargo, en la práctica, la salida de escala completa de un sensor de mapa de producción puede variar y suele ser inferior a 5 V. Esto se debe a las variaciones entre los fabricantes de sensores, con el resultado de que un voltaje de escala completa típico es de alrededor de 4,6 V. Debido a estas variaciones, durante el funcionamiento normal, la lectura del sensor de mapa variará entre aproximadamente 1,5 V y 4,5 V, con la excepción del vacío creado en el rebasamiento donde se pueden registrar voltajes de salida inferiores a 1 V.
Además, dado que la presión barométrica tiene un impacto significativo en la mezcla de combustible, la ECU también debe comprender cuál es la presión barométrica. Para lograr esto, las mediciones de presión ambiental generalmente se registran justo antes de arrancar el motor, justo después de apagarlo o ambos.
Estas mediciones se utilizan para establecer una condición de línea base que corrige la presión del colector para las condiciones climáticas y de elevación. En la práctica, esto se logra mediante señales de encendido y apagado del motor. De esta forma, el mismo sensor que controla el motor mientras está en funcionamiento se utiliza para la medición barométrica cuando el motor está apagado.
La inducción forzada aumenta la presión en los sensores MaP
Cuando un motor de aspiración natural se convierte en inducción forzada mediante la adición de un turbo o sobrealimentador, el rango de presión del colector debe ampliarse para incluir la región de impulso así como la región de vacío. Para cubrir todo el rango de presión, se debe utilizar un sensor de mapa que cubra al menos 1,5 bar de presión o un rango que coincida con los parámetros de diseño del motor.
En caso de que las presiones de refuerzo superen los 1,5 bar, es importante que, para mantener una lectura de escala completa, se agregue una compensación decreciente a la lectura a medida que aumenta la presión. Esto tiene una importancia práctica porque en los sistemas de gestión del motor basados en sensores de mapas, es fácil hacer un corte de combustible o generar una falla en la ECU si se supera la lectura nominal de escala completa. Es por eso que se asigna una compensación decreciente cuando se usa un sensor de 2 bar para leer presiones por encima de la presión nominal de escala completa.
El abastecimiento de sensores MaP para cumplir eficazmente con estos amplios requisitos no siempre es fácil. Sin embargo, dado que el sensor MaP juega un papel crucial en la gestión eficaz del proceso de combustión, es importante que, para registrar con precisión las presiones múltiples durante el desarrollo, se utilice un sensor MaP de alta calidad calibrado con precisión. Y con los fabricantes bajo presión para reducir aún más las emisiones y mejorar el rendimiento, los ingenieros de aplicaciones continuarán exigiendo mejoras en la precisión de los sensores utilizados para el desarrollo.