Mapear la presión de sobrealimentación en motores turbo reducidos es la clave del éxito

Mapear la presión de sobrealimentación en motores turbo reducidos es la clave del éxito

Para cumplir con la cada vez más estricta legislación sobre emisiones en todo el mundo, los fabricantes de equipos originales están optando por motores de encendido por chispa reducidos. Si bien estos motores más pequeños consumen menos combustible y producen emisiones significativamente más bajas, requieren inducción forzada para ofrecer el rendimiento que los conductores esperan de los vehículos de pasajeros modernos.

La capacidad de conducción de estos motores turbo reducidos debe al menos igualar el rendimiento de sus equivalentes de aspiración natural. Esto requiere una presión de sobrealimentación completa a bajas velocidades del motor sin quedarse sin vapor a alta velocidad, lo que solo se puede lograr con un sofisticado sistema de control de presión de sobrealimentación.

El principal problema con estos motores de encendido por chispa de inducción forzada es el control preciso de la relación aire-combustible cerca de los valores estequiométricos a diferentes presiones de refuerzo. A velocidades bajas, estos motores son propensos a golpear bajo cargas medias a altas.

Sistemas modernos de control de presión

El control de la derivación del lado de la turbina es la forma más sencilla de control de la presión de sobrealimentación.

Una vez que se alcanza una presión de refuerzo específica, parte del flujo de gas de escape se redirige alrededor de la turbina a través de un bypass. Un diafragma cargado por resorte generalmente opera la compuerta de descarga que abre o cierra el bypass en respuesta a la presión de refuerzo.

En los últimos tiempos, los fabricantes han recurrido a la geometría de turbina variable para regular la presión de sobrealimentación. Esta geometría variable permite variar la sección transversal del flujo de la turbina para que coincida con los parámetros de funcionamiento del motor.

A bajas velocidades del motor, la sección transversal del flujo se reduce cerrando las paletas de guía. La presión de sobrealimentación y, por tanto, el par motor aumenta como resultado de la mayor caída de presión entre la entrada y la salida de la turbina. Durante la aceleración desde velocidades bajas, las paletas se abren y se adaptan a los requisitos correspondientes del motor.

Regulando la sección transversal del flujo de la turbina para cada punto de funcionamiento, se puede optimizar la energía de los gases de escape y, como resultado, la eficiencia del turbocompresor y, por lo tanto, la del motor es superior a la conseguida con el control de derivación.

En la actualidad, los sistemas electrónicos de regulación de la presión de sobrealimentación se utilizan cada vez más en los motores de gasolina modernos de encendido por chispa. En comparación con el control puramente neumático, que solo puede funcionar como un limitador de presión de carga completa, un control de presión de refuerzo flexible permite un ajuste óptimo de la presión de refuerzo de carga parcial.

El funcionamiento de la aleta, o las paletas, se somete a una presión de control modulada en lugar de una presión de sobrealimentación completa, utilizando varios parámetros como la temperatura de carga, el avance del tiempo de encendido y la calidad del combustible.

La simulación reduce el tiempo de producción y los costos de desarrollo

Ante una plétora de variables complejas, los fabricantes han recurrido a la simulación durante la fase de diseño y prueba.

Un obstáculo importante que se debe superar con los motores turboalimentados reducidos es el rango estrecho dentro del cual el compresor centrífugo funciona de manera estable a altas presiones de refuerzo.

La única forma de crear un modelo de simulación eficaz es mediante pruebas exhaustivas del mundo real . Esta prueba se realiza principalmente en dinamómetros de motores en cámaras climáticas.

Durante las ejecuciones totalmente abiertas y con aceleración parcial, se registra la siguiente información de presión:

  • Presión del colector de admisión
  • Impulso de presión
  • Presión barométrica

Por supuesto, todo esto está integrado con las temperaturas del motor (refrigerante y aceite) para obtener una imagen del rendimiento del motor en todo el rango de velocidad del motor.

Durante esta prueba, es importante que los ingenieros noten cualquier anomalía en el rendimiento, ya que eventos como los pulsos de escape a una velocidad específica del motor pueden generar ondas estacionarias que pueden excitar el impulsor a una frecuencia crítica que reducirá la vida útil del turbo o incluso conducirá a Fallo catastrófico.

Por lo tanto, la medición de mapas de rendimiento de presión tanto del compresor como de la turbina es vital para la creación de un modelo de extrapolación preciso para su implementación durante la simulación.

Una herramienta de simulación bien desarrollada puede ahorrarle tiempo y dinero al OEM en pruebas de dinamómetro y en carretera, pero solo se puede desarrollar una vez que se hayan completado los mapas de presión.

El turbocompresor sucumbe a las presiones de la conservación de energía

El turbocompresor sucumbe a las presiones de la conservación de energía

Durante muchos años, los turbocompresores solo se encontraron en autos deportivos costosos y motores diesel, pero las regulaciones de emisiones cambiaron la forma en que el mundo veía la inducción forzada. Aunque en el centro todavía estaba la búsqueda para mejorar el rendimiento, ahora los fabricantes buscaban restaurar el rendimiento y la facilidad de conducción a motores de consumo de combustible reducidos. Así, en el 21 st Century, casi todo de la pequeña 999 cm 3 Ford Ecoboost a la última Ferrari de todas las nuevas tecnologías turbo brillante ganado.

Pero casi tan pronto como la tecnología se hizo realidad, parece que se volverá redundante, eclipsado por el nuevo eCharger. Audi ya lo instaló en el SQ7 de producción en serie y estará implementando la tecnología en los vehículos de producción futuros a medida que la electrificación de 48 voltios gane tracción.

La ventaja clave del sobrealimentador de accionamiento eléctrico es que, al igual que con los turbocompresores, no hay pérdidas parásitas; pero a diferencia de la mayoría de los turbo, tampoco hay retraso del turbo ni necesidad de una válvula de descarga. El potente motor eléctrico puede acelerar el impulsor a 70.000 rpm en menos de un segundo, lo que elimina el retraso del turbo.

Esto, naturalmente, mejora la capacidad de conducción y reduce el consumo y las emisiones entre un 7 y un 20 por ciento cuando el dispositivo se utiliza en un vehículo equipado con frenado regenerativo, que captura la energía cinética del automóvil y la convierte en electricidad.

La presión es clave para desbloquear el rendimiento del eCharger

Controlado electrónicamente, el eCharger se puede mapear para optimizar el rendimiento del motor mientras se maximiza la energía recuperada de los gases de escape, pero para lograr esta utopía, los ingenieros deben crear un  mapa del impulso que requiere el motor midiendo las presiones del colector en varias cargas del motor. y velocidades. Esto solo se puede hacer con la ayuda de sensores de presión de alta calidad .

Al igual que con cualquier super / turbocargador, es importante que la unidad se adapte a los requisitos del motor: si no lo hace, se dejará sin energía al motor o se producirá un consumo de energía eléctrica innecesario.

Al ser una tecnología en proceso de maduración, los ingenieros que deseen explorar los límites de los supercargadores eCharge no disponen de muchos datos de investigación y pruebas. Aunque la dinámica de fluidos y la ingeniería eléctrica pueden proporcionar una buena base sobre la que construir, sigue siendo vital que las teorías se validen en condiciones de prueba del mundo real.

Para calificar el desempeño, una vez que se ha seleccionado el eCharger de referencia, el vehículo está equipado con sensores de presión extremadamente precisos que se calibran fácilmente y brindan lecturas precisas en una amplia gama de presiones y temperaturas de refuerzo del múltiple. Estos sensores también deben ser resistentes a la vibración y la degradación química.

Tanto en el dinamómetro del motor como en las pruebas en carretera, la posición del acelerador / la velocidad del motor / la presión del aire del colector se registran continuamente para determinar la interrelación de estas entradas clave.

A partir de esta información, los ingenieros pueden verificar que se ha seleccionado la configuración correcta del cargador electrónico y, al mismo tiempo, garantizar que los controles de gestión del motor de circuito cerrado puedan responder correctamente a las variables clave.

El resultado de hacerlo bien ofrece un vehículo, como el SQ7, que tiene un rendimiento, una capacidad de conducción y un consumo de combustible asombrosos y, al mismo tiempo, cumple con las futuras regulaciones de emisiones globales.

Las fabricantes están sintiendo la presión

Las fabricantes están sintiendo la presión

Con las regulaciones de emisiones establecidas para aumentar un poco más en China, Europa y América del Norte, los fabricantes están en apuros para optimizar cada componente y función del motor para cumplir con las nuevas demandas de manera rentable.

Aunque los motores que están en desarrollo siempre se han probado para garantizar que cumplan con los requisitos de calidad más estrictos en términos de materiales, emisiones y eficiencia, existe un enfoque renovado en el desarrollo detallado para desbloquear el rendimiento que antes se había pasado por alto.

Para hacer esto, cada vez que se hace funcionar un motor en un banco de pruebas, se deben monitorear y medir todas las variables que influyen en las emisiones y el rendimiento para comprender su rendimiento individual y cómo funcionan como parte del sistema general.

Esto requiere un equipo de medición preciso y altamente confiable que proporcione lecturas precisas en las condiciones extremas que se encuentran dentro y alrededor del motor. Los sensores de esta calidad y precisión son fabricados por solo un puñado de proveedores en todo el mundo, que se destacan por la capacidad de personalizar los sensores de presión de calidad según los requisitos del cliente.

Los sensores de presión son clave para eliminar ineficiencias

STS ha desarrollado sensores de presión que cumplen con los requisitos de los diseñadores de motores de OEM, de primer nivel y especialistas en el desarrollo de motores. Con estos sensores, los clientes llevan a cabo trabajos de desarrollo y diseño que se centran principalmente en reducir las emisiones de escape y lograr una alta densidad de potencia, bajo consumo de combustible, larga vida útil y máxima fiabilidad.

Debido a que la eficiencia de un motor depende en gran medida del flujo de aire y la densidad de carga en la cámara de combustión y de cómo se utilizan los gases de escape para mejorar el par del motor, por medio de un turbocompresor, o se pueden descargar de manera eficiente, es fundamental mapear con precisión las regiones de presión clave . Estas presiones suelen ser del orden de milibares, lo que requiere una medición extremadamente precisa y muy dinámica.

Además, para obtener un análisis confiable de la distribución de presión dentro del colector de entrada, es importante tomar medidas de presión de entrada lo más cerca posible de cada válvula de entrada. Esto es para adaptarse a la geometría variable del colector que a menudo da como resultado que cada cilindro reciba una cantidad diferente de aire, lo que impacta negativamente tanto en el rendimiento como en las emisiones.

Al determinar el rendimiento del sistema de escape, la medición de la presión se vuelve bastante compleja, ya que no solo el rendimiento del escape depende de la presión, sino también de la interacción de los pulsos de los gases de escape debido al orden de encendido del motor. Los sensores de presión STS son capaces de medir estos procesos tanto en el lado de entrada como en el de salida con un alto nivel de precisión.

Los sensores robustos deben permanecer precisos en un entorno hostil

En el entorno de prueba, los sensores deben ser resistentes a los productos químicos y aceites asociados con los motores, y deben poder medir con precisión las presiones en temperaturas extremas. Además, los sensores deben funcionar de manera confiable y no verse afectados por vibraciones o fluctuaciones de voltaje.

La gama de sensores de STS también permite a los clientes tomar medidas en sistemas críticos como bombas de aceite, combustible y agua, líneas de inyectores, intercoolers e intercambiadores de calor. Todos ellos son vitales para optimizar la eficiencia del motor.

Por lo tanto, aunque los clientes y los reguladores están aumentando las demandas de motores más limpios y de mejor rendimiento, los fabricantes de equipos originales y los proveedores están bien equipados para estirar los límites e incluso superar las expectativas.

Suscríbete a nuestro boletín

Suscribase a nuestra lista de correo para recibir las últimas noticias y actualizaciones de nuestro equipo.

¡Te has suscripto satisfactoriamente!