Proyecto de investigación DeichSCHUTZ: Medidas fiables para frentes de agua más seguros

Proyecto de investigación DeichSCHUTZ: Medidas fiables para frentes de agua más seguros

En situaciones de inundaciones extremas, las esperanzas de las personas afectadas residen únicamente en los diques: ¿aguantarán o no? La falla de un dique como la inundación de 2013 en Fischbeck (Sajonia-Anhalt) causó inmensos daños en las áreas del interior, que continúan teniendo un impacto hasta el día de hoy. El proyecto de investigación activo DeichSCHUTZ (protección de diques) en la Universidad de Ciencias Aplicadas de Bremen está involucrado en un innovador sistema de protección de diques que podría prevenir fallas de este tipo.

Solo en Alemania, los diques fluviales protegen muchos miles de kilómetros de tierras costeras. Desde la perspectiva tecnológica actual, se están construyendo diques que constan de tres zonas. Las zonas individuales, vistas desde el lado del agua hasta el lado de la tierra, se construyen con una porosidad en constante aumento, lo que permite un buen drenaje del cuerpo del dique durante una inundación. En Alemania, sin embargo, todavía existen muchos diques más antiguos de construcción homogénea, como el dique roto durante una inundación del río Elba en junio de 2013 en Fischbeck. A diferencia de los diques de 3 zonas, los más antiguos son particularmente vulnerables a las condiciones de inundaciones prolongadas. El agua se filtra en el propio dique y su línea de saturación se eleva aún más dentro del cuerpo del dique durante períodos prolongados de pleamar. Cuanto más se eleva esta línea de saturación, más el material molido está sujeto a flotabilidad.

La estabilización de un dique propenso a rupturas requiere enormes recursos en material y personal, así como en tiempo, lo que en situaciones de inundación aguda es un bien escaso. Por lo tanto, se requieren procedimientos de respaldo, que, en términos de personal, materiales y compromiso de tiempo, son más efectivos que colocar sacos de arena en capas en el lado terrestre del dique.

Innovador sistema de protección de diques móviles

Christopher Massolle, del Instituto de Ingeniería Hidráulica y Costera de la Universidad de Ciencias Aplicadas de Bremen, está desarrollando una solución que puede reducir considerablemente la inversión de tiempo y personal. Con el proyecto de investigación DeichSCHUTZ, patrocinado por el Ministerio Federal de Educación e Investigación, se está probando un innovador sistema móvil de protección de diques para estabilizar diques durante inundaciones. La tecnología de medición proporcionada por STS también juega un papel aquí.

Para evaluar el sistema de protección de diques móviles, se ha construido un dique de prueba en las instalaciones de la Agencia de Asistencia Técnica en Hoya. Para ello se ha construido una balsa de retención en forma de U que contiene unos 550 metros cúbicos de agua, en cuyo extremo se asienta un dique.

Como se puede ver en el video, se han desplegado numerosas tuberías en el lado izquierdo del dique. Dentro de estas tuberías se encuentran los sensores de nivel ATM / N producidos por STS. En la disposición de prueba, el depósito de retención se llena con agua subterránea. En condiciones que se acercan a la realidad, el agua debería elevarse a un nivel de 3 metros durante un período de 30 horas. El sensor de nivel sumergible  ATM / N  ahora mida el desarrollo de la línea de saturación durante este tiempo. Con un rango de presión de 1 a 250 mH2O y una precisión de ≤ ± 0,30% FS (-5 a 50 ° C), esto se registra hasta el último centímetro. Cuando la línea de saturación ya no sigue aumentando, el sistema de protección de diques móviles se introduce en la pendiente del lado del agua y debe evitar la penetración de agua de filtración. El cuerpo del dique ahora continúa drenando y la extensión del desplazamiento resultante en la línea de saturación debe ser medida por los sensores de nivel empleados. Es a partir de estos resultados medidos que finalmente se puede evaluar la funcionalidad del sistema de protección.

Uso de la geomorfometría para el análisis hidrogeomorfológico en una cuenca de investigación mediterránea

Uso de la geomorfometría para el análisis hidrogeomorfológico en una cuenca de investigación mediterránea

Abstracto

El objetivo del trabajo es aplicar un procedimiento geomorfométrico basado en objetos para definir las áreas de contribución de la escorrentía y apoyar un análisis hidrogeomorfológico en una cuenca de investigación mediterránea de 3 km 2 (sur de Italia).

Se recopilaron y registraron datos de conductividad eléctrica y descargas diarias y cada hora en base a la actividad de monitoreo de tres años. Los análisis del quimógrafo Hydro10 sobre estos datos revelaron una fuerte respuesta hidrológica estacional en la cuenca que fue diferente de los eventos de flujo de tormenta que ocurrieron en el período húmedo y en los períodos secos. Este análisis nos permitió definir las firmas hidroquimográficas relacionadas con el aumento de la magnitud de la inundación, que involucra progresivamente varios componentes de la escorrentía (flujo base, flujo subsuperficial y flujo superficial) y un área creciente que contribuye a la descarga. Los estudios de campo y las mediciones de la capa freática / descarga llevadas a cabo durante un evento de tormenta seleccionado nos permitieron identificar y mapear 15 áreas de fuentes de escorrentía específicas con unidades geomorfológicas homogéneas previamente definidas como hidro-geomorfo-tipos (puntos de manantial, filtración difusa a lo largo del canal principal, filtración a lo largo de los corredores ribereños, salida difusa de los taludes de las laderas y extracción de concentrados de los huecos coluviales). Siguiendo los procedimientos previamente propuestos y utilizados por los autores para el mapeo geomorfológico basado en objetos, se realizó una segmentación y clasificación hidrogeomorfológicamente orientada con un paquete e-Cognition (Trimble, Inc). El mejor acuerdo con el mapeo geomorfológico basado en expertos se obtuvo con el perfil ponderado y la suma de curvaturas de 20 planos en ventanas de diferentes tamaños. Combinando el análisis hidroquímico y el mapa de hidrogeomorfotipo basado en objetos, se modeló gráficamente la variabilidad de las áreas de contribución para el evento seleccionado que ocurrió durante la temporada de lluvias utilizando los valores logarítmicos de acumulación de flujo que se ajustan mejor a las áreas de contribución. Los resultados nos permitieron identificar el componente de escorrentía en el hidroquimógrafo para cada paso de tiempo y calcular una contribución de descarga específica de cada tipo hidrogeomorfo. Este tipo de enfoque podría ser útil aplicado a captaciones similares, dominadas por lluvias, boscosas y sin karst 25 en la ecorregión mediterránea.

Lea el estudio de investigación completo.

Fuente: Domenico Guida1, Albina Cuomo (1), Vincenzo Palmieri (2)
(1) Departamento de Ingeniería Civil, Universidad de Salerno, Fisciano, 84084, Italia
(2) ARCADIS, Agencia para la Defensa del Suelo de la Región de Campania, 5 Nápoles, Italia

Monitoreo confiable de aguas subterráneas y superficiales en Rumania

Monitoreo confiable de aguas subterráneas y superficiales en Rumania

Se requiere un sistema de control sin interrupciones con función de alarma para realizar mediciones precisas del nivel del agua y realizar pronósticos confiables sobre el suministro de agua potable, así como para anticipar inundaciones. Junto con su socio MDS Electric Srl, STS ha implementado un sistema integral para la gestión de aguas subterráneas y superficiales en Rumania.

Rumanía extrae la mayor parte de su agua potable de aguas superficiales como el Danubio, así como de los recursos hídricos subterráneos. Por tanto, una buena gestión de estos recursos naturales es de gran importancia.

Para salvaguardar el suministro de agua potable y protegerse de las inundaciones, la nación ha invertido en una infraestructura integral de medición hidrológica.

Figura 1: Punto de medición de agua subterránea 

En colaboración con su socio rumano, MDS Electric Srl, se han instalado más de 700 registradores de datos y más de 350 sistemas de transmisión de datos en todo el país en los últimos años, también en áreas remotas. Por esta razón, la inversión principal fue en instrumentos de medición operados por baterías, que monitorean la situación actual en los ríos de la región del Danubio y también los recursos de agua subterránea en todo el país.

Soluciones de medición específicas para requisitos 

Esta fue una empresa compleja, ya que cada una de las sondas sumergibles y sistemas de transmisión de datos desplegados requirió una evaluación e intervención diferente para cumplir con sus respectivas condiciones. En este caso, también era indispensable una función de alarma automática, en caso de que se superaran los valores límite predefinidos.

El control permanente de los niveles de agua en nodos importantes del suministro de agua potable, así como en los ríos de la región del Danubio, depende de una multitud de requisitos:

  • Una transferencia de datos automatizada y confiable a través del protocolo M2M
  • Función de alarma automática cuando se excede el valor límite
  • Monitoreo del nivel y la temperatura del agua, así como la temperatura ambiente en algunos casos
  • Una solución de servidor con funciones para visualizar, evaluar y procesar los datos medidos, así como la base de datos integrada
  • Fácil instalación y mantenimiento.
  • Servicio de soporte in situ

Para la implementación de este proyecto a gran escala, STS optó por las mediciones de presión y temperatura para los registradores de datos DL / N 70 y WMS / GPRS / R / SDI-12 o, según los requisitos, el DTM.OCS.S / N Transmisor de datos digitales con interfaz Modbus para garantizar una medición de nivel de agua de alta precisión con una precisión del 0,03 por ciento en puntos críticos.

En asociación con nuestro socio local MDS Electric Srl, STS pudo realizar todo el sistema de monitoreo del nivel de agua desde una sola fuente. Cada punto de instalación fue evaluado in situ por expertos de MDS Electric Srl y STS, con el fin de instalar una solución personalizada en cada uno de esos puntos de medición individuales. También se garantiza la estabilidad a largo plazo de la tecnología de medición de presión implementada. El transmisor Modbus DTM.OCS.S / N sobresale en esta área con una excelente estabilidad a largo plazo de menos del 0.1 por ciento de error total por año. Debido a su bajo consumo de energía y diseño robusto, este sensor funciona en gran parte sin mantenimiento durante años.

Más ventajas del DTM.OCS.S / N en resumen:

  • Rango de presión: 200 mbar … 25 bar
  • Precisión: ≤ ± 0,15 / 0,05 / 0,03% FS
  • Temperatura de funcionamiento: -40… 85 ° C
  • Temperatura del medio: -5… 80 ° C
  • Interfaz: RS485 con Modbus RTU (protocolo estándar)
  • Implementación simple en sistemas Modbus existentes
  • Fácil ajuste de span y offset
Predicción de peligros naturales: medición de nivel de lagos glaciares

Predicción de peligros naturales: medición de nivel de lagos glaciares

Los glaciares de los Alpes están en constante cambio. Después del deshielo en primavera y verano, pueden aparecer lagos cuyos niveles deben ser monitoreados continuamente para detectar inundaciones en una etapa temprana. Aquí se necesitan sensores de presión, sensores de nivel y registradores de datos fiables.

La empresa suiza internacionalmente activa Geopraevent desarrolla, instala y opera sistemas de alarma y monitoreo de alto grado para diversos peligros naturales, como avalanchas, deslizamientos de tierra e inundaciones. Según la tarea y las condiciones locales, los sistemas se diseñan e implementan individualmente. En la actualidad, se utilizan más de 60 sistemas de alarma y monitorización en todo el mundo. Cuando se trata de catástrofes naturales, no hay margen de error a la luz de las consecuencias potencialmente graves: la tecnología empleada debe funcionar de manera sólida a lo largo de los años. Por esta razón, todos los sistemas están conectados a los servidores de Geopraevent para garantizar un funcionamiento sin fallos.

Medición de nivel en los lagos glaciares Plaine Morte

Esto también se aplica al sistema encargado en 2011 para monitorear el glaciar Plaine Morte en los Alpes de Berna. Tan pronto como las temperaturas suben en primavera, el glaciar comienza a derretirse (ver video). A partir de esta agua que se derrite, se forman tres lagos (Faverges, Vatseret y Strubel) cada año, que luego se hinchan constantemente durante los meses de verano antes de finalmente vaciarse nuevamente.

El peligro para el cercano municipio de Lenk, que encargó el proyecto, surge principalmente del lago Faverges. Como los otros dos lagos, existe solo en las estaciones más cálidas. Después de su recurrencia anual como resultado del derretimiento de la nieve y los glaciares, el agua se calienta en los meses siguientes y luego busca una salida a través del hielo. Poco a poco, este canal de salida se vuelve más descongelado, lo que significa que el caudal aumenta constantemente. En agosto de 2014, por ejemplo, unos 20 metros cúbicos de agua por segundo barrieron el Trüebach en dirección a Lenk. Después de vaciar el lago glaciar, el ciclo comenzará nuevamente la próxima primavera con el inicio del deshielo.

Para predecir la ruptura de un lago glacial e iniciar las medidas de protección adecuadas, Geopraevent instaló un sistema de monitoreo que garantiza un período de alerta temprana de uno a dos días. En la realización de este proyecto, debido a las excepcionales propiedades de estabilidad a largo plazo y otras, también se ha confiado en la tecnología de sensores STS.

Alarma de brote de lago glacial por SMS

Para poder estimar de manera realista el peligro que representan estos lagos glaciares en todo momento, se instalaron un total de cuatro estaciones de medición: una en cada uno de los tres lagos, así como otra en el Trüebach, por donde fluye el agua hacia el municipio de Lenk durante la descarga de un lago glaciar.

El nivel del agua de los tres lagos glaciares se controla mediante sensores de presión. Para ello, los instrumentos de medición se sumergen en la parte más profunda de cada lago mediante un helicóptero. Los sensores de nivel ATM / N / T se conectan mediante un cable a registradores de datos montados en una cumbrera. Los registradores de datos utilizados en este caso funcionan con energía solar y sus datos recopilados se transfieren a Geopraevent a través de telefonía móvil. Si el registrador de datos indica niveles descendentes, esta es una clara señal de vaciado en el lago glacial correspondiente.

Estación de medición en el glaciar Plaine Morte (Foto: Geopraevent)

Además de la medición del nivel del lago, un radar de nivel también monitorea el nivel de llenado del Trüebach. Esta estación de medición adicional sirve para verificar que el lago glaciar también se está vaciando hacia el propio municipio. Dado que el Trüebach pasa por un barranco, el radar de nivel está conectado a un cable de acero tendido a través del barranco y también está conectado a un registrador de datos a través de un cable.

Tan pronto como se superen o superen los valores límite predefinidos en los lagos y el Trüebach, los responsables de la comunidad de Lenk son informados automáticamente por SMS y pueden tomar las medidas adecuadas para evitar inundaciones.

Sitios contaminados: la descontaminación del agua subterránea requiere sensores de nivel robustos

Sitios contaminados: la descontaminación del agua subterránea requiere sensores de nivel robustos

Ya sean vertederos viejos, vertederos de carbón, antiguos emplazamientos militares o refinerías, lo que queda atrás es suelo contaminado, que es un peligro tanto para los seres humanos como para el medio ambiente. En la rehabilitación de estos sitios, se requieren sensores de nivel que sean resistentes a las sustancias peligrosas a menudo agresivas que se encuentran.

Los sitios contaminados no solo se caracterizan por cambios adversos para la salud o el medio ambiente en el suelo. En ausencia de medidas de seguridad (como en los viejos vertederos) y dependiendo de las condiciones del suelo, la lluvia arroja sustancias peligrosas al agua subterránea. Dependiendo del tipo de uso, se pueden encontrar varias sustancias peligrosas diferentes, que incluyen, entre otras:

  • Compuestos de metales pesados: cobre, plomo, cromo, níquel, zinc y arsénico (un metaloide)
  • Materiales orgánicos: Fenoles, aceite mineral, bencenos, hidrocarburos clorados (CHC), hidrocarburos aromáticos (PAH)
  • Sales: Cloruros, sulfatos, carbonatos

Descontaminación del suministro de agua subterránea.

En la rehabilitación de sitios contaminados, no solo es de gran importancia la limpieza del suelo, sino también el control y depuración de las aguas subterráneas. Sin sensores de nivel fiables que puedan soportar las condiciones adversas, esto no sería posible.

El proceso de descontaminación generalmente se desarrolla de la siguiente manera: El agua subterránea contaminada se bombea a la superficie y luego se trata. Como agua de lavado filtrada, luego se devuelve a la fuente de contaminación. Para evitar que el agua de descarga fluya hacia un margen alejado de la fuente de contaminación, se utilizan métodos hidráulicos activos para la infiltración protectora. El agua se inyecta en el suelo a través de varios pozos situados alrededor del proceso de descontaminación. Las condiciones de presión que surgen aquí forman en cierta medida una pared de barrera y hacen que el agua de descarga fluya hacia la fuente de contaminación. Para controlar y monitorear este proceso, se requerirán sensores de nivel.

Figura 1: Flujo de un proceso de descontaminación

Por supuesto, los sensores de nivel también se utilizan después del trabajo de reparación. Mucho después de la finalización de este trabajo, los sitios afectados serán monitoreados para verificar si hay cambios notables en el nivel del agua o la dirección del flujo.

Los sensores de nivel también se utilizan cuando se ejecutan activamente aplicaciones potencialmente dañinas para el medio ambiente. Los rellenos sanitarios más nuevos ahora se construyen como una cuenca impermeable. El nivel del agua subterránea debajo del relleno sanitario se reduce, de modo que no pueda fluir agua a las áreas adyacentes en caso de fuga. Aquí también, los respectivos niveles de agua deben ser monitoreados por sensores de nivel.

Sensores de nivel en aguas contaminadas: las más altas exigencias 

Los operadores en el campo de la descontaminación de sitios contaminados deben tener mucho cuidado al elegir sensores de nivel adecuados. Debido a la gran cantidad de sustancias que se pueden disolver en el agua, no existe una solución única que funcione de manera confiable en todos los casos. Hay varios aspectos a considerar, que a continuación describimos brevemente.

Materiales

Alojamiento

En la mayoría de las aplicaciones, un acero inoxidable de alta calidad, como el que utiliza STS, es suficiente para proteger la celda de medición de sustancias agresivas. Si este entrara en contacto con agua salada, entonces se elegiría una carcasa de titanio, pero donde se esperan efectos galvánicos, se debe elegir un sensor de nivel hecho de PVDF .

Figura 2: Sensor de nivel ATM / NC químicamente resistente con carcasa de PVDF

Cable de sonda

En nuestra experiencia, mucho más crítico que elegir una carcasa adecuada es la elección del cable de la sonda. Debido a los procesos de difusión gradual, el progreso de la destrucción no es evidente de inmediato. A menudo, esto no es visible desde el exterior incluso cuando ya está dañado. Por lo tanto, se requiere especial precaución al consultar las tablas de resistencia, ya que generalmente dicen poco en particular sobre los cables de sonda. En el medio de un cable de sonda hay un pequeño tubo de aire, que sirve para igualar la presión relativa. Sin embargo, si el material del cable no es resistente al cien por cien, las materias primas pueden difundirse a través de la cubierta del cable y viajar a través del tubo de aire hacia el chip del sensor.

Dependiendo de las sustancias previstas, los usuarios de STS pueden recurrir a cables PE, PUR o FEP. Este último también se puede utilizar a temperaturas muy altas de hasta 110 ° C.

instalación

Tendido de cables

Los viejos vertederos y sitios industriales son entornos hostiles, donde no solo las sustancias peligrosas pueden afectar la funcionalidad de los sensores de nivel utilizados. Se debe tener cuidado de que la cubierta del cable no se dañe por cargas mecánicas (como escombros). También deben evitarse los puntos de roce y retorcimiento. Por lo tanto, se recomienda utilizar tubos protectores especiales, como los que ofrece STS, al enrutar los cables.

Alivio de tensión

La clasificación de compresión de los sensores de nivel varía de un fabricante a otro. En STS, todos los sensores de nivel son resistentes a la presión hasta 250 metros de forma estándar y su cable está diseñado para tensiones de tracción normales hasta esta profundidad. Sin embargo, los operadores deben considerar el uso de alivio de tensión en condiciones de instalación difíciles.

Montaje

Si el sensor se utiliza en aguas corrientes o tanques con agitadores, se puede suministrar con una rosca G 1/2 ”en la salida del cable (montaje en tubería) o con un racor de compresión (15 mm).

Protección contra explosiones

En aplicaciones en las que se esperan varias sustancias peligrosas, es imperativo prestar atención también a la protección contra explosiones. La directiva ATEX que cumple con los estándares internacionales proporciona información al respecto.