Avec près de 40 millions de moteurs à essence à injection directe (GDI) qui devraient être vendus à l’horizon 2025, il peut être surprenant d’apprendre que ces moteurs émettent plus de particules fines que les moteurs à essence à injection multipoint (PFI) et plus que les derniers moteurs Diesel équipés d’un filtre à particules.
Cette augmentation de part de marché des moteurs à injection directe, bien que faible comparée à celle des moteurs Diesel sans filtre, engendre un regain d’intérêt des autorités de réglementation et des constructeurs sur les émissions de particules fines de ces moteurs.
Pour réduire les émissions et améliorer les performances globales, les ingénieurs étudient de nouvelles techniques de combustion et de conception d’ingénierie, incluant l’augmentation de la pression de carburant, l’utilisation de carburants alternatifs et le contrôle des émissions de gaz d’échappement.
Selon Matti Maricq, chef de projet en ingénierie chimique et en traitement des émissions au Centre de recherche et d’innovation de Ford à Dearborn, injecter directement le carburant dans le cylindre permet une amélioration de la combustion, une réduction de la consommation, et une augmentation de la puissance.
Au cours de ce processus, l’essence est directement pulvérisée au point le plus chaud de la chambre de combustion (plutôt que dans la prise d’air), ce qui permet une combustion plus complète, plus uniforme et plus légère.
Les moteurs GDI à combustion améliorée émettent des particules nocives
Toutefois, en raison de la volatilisation incomplète du carburant, ainsi que des zones partiellement riches en carburant et de l’effet de « mouillage » des pistons et des cylindres, les moteurs à injection directe produisent des particules indésirables. La plupart des émissions se produisent généralement lors du démarrage à froid et des phases transitoires de préchauffage, mais cela peut varier en fonction de la charge, de la phase du cycle de conduite et des comportements du conducteur.
Alors que les critiques écologistes restent sceptiques quant aux méthodes dites de « gestion du moteur », les estimant peu fiables par rapport aux filtres d’échappement, la plupart des constructeurs et équipementiers prévoient que les modifications apportées à la conception et à l’ingénierie de la combustion seront plus rentables, voire plus efficaces.
Les développements actuels indiquent qu’une pression de carburant plus élevée (pouvant atteindre 40 MPa), associée à de nouveaux injecteurs à haute précision, améliorera considérablement les futurs systèmes des moteurs à injection directe. Pour optimiser davantage les systèmes, les ingénieurs continueront également d’améliorer la synchronisation, la portée, le dosage et la pulvérisation des injecteurs.
Dans une récente étude publiée dans le journal spécialisé SAE, il a été établi qu’une augmentation de la pression de carburant dans un moteur à injection directe peut améliorer l’homogénéité du mélange et diminuer la diffusion de la flamme, réduisant ainsi de manière significative les émissions de particules.
En outre, grâce à l’amélioration de la charge d’admission à des pressions de carburant comprises entre 20 MPa et 40 MPa, une réduction supplémentaire des émissions de particules peut être obtenue.
Comme l’indiquent les données de combustion, une augmentation de la pression de carburant a un impact significatif sur la réduction des émissions de combustion et de la consommation de carburant.
Toutefois, pour qu’un système à injection directe fonctionne de manière optimale, il est important que la pression de carburant dans la rampe commune soit correctement mesurée pendant les phases de conception et de test, afin que le calculateur puisse être configuré en conséquence.
Mesurer la pression de carburant dans la rampe commune est essentiel pour réduire les émissions de particules
La pression d’injection directe est mesurée à l’aide de capteurs, et les signaux servent à déterminer la vitesse et/ou le débit de la pompe.
La plupart des systèmes à injection directe utilisent des capteurs de pression piézorésistifs situés sur le côté basse pression du système. La puce génère une tension électrique mesurable lorsque la pression est appliquée, augmentant à mesure que la pression augmente.
Sur le côté haute pression, les capteurs utilisent généralement une membrane métallique sur un pont de résistance. Lorsque la pression est appliquée, le pont génère un changement de résistance qui entraîne une modification de la tension appliquée. Le module de commande électronique (ECM) transforme la tension en une pression calculée, généralement avec une précision de ± 2 %.
Pour maintenir une pression correcte, l’ECM envoie une impulsion à la pompe basse pression. Le système dispose généralement d’un régulateur, sans conduite de retour. Certains systèmes ont même des capteurs de température intégrés dans les conduites pour calculer la densité du carburant, afin que la richesse du combustible puisse être ajustée en fonction de la quantité d’énergie contenue dans le carburant.
Afin de garantir une mesure précise de la conduite de pression, il est important d’utiliser des capteurs de pression haute précision pour cartographier la pression à l’intérieur de la rampe commune. Toute erreur dans ce processus peut entraîner une modulation incorrecte de la pression de la rampe commune, qui peut engendrer à son tour de graves anomalies, telles que le « lavage des cylindres » (phénomène qui se produit lorsque la pression moyenne de la rampe commune dépasse la pression de calcul de l’injecteur lorsque l’alimentation en carburant augmente à fortes charges).
En outre, avec l’introduction du cycle de conduite harmonisé, les constructeurs doivent désormais répondre à de nouveaux objectifs d’émissions fixés par les régulateurs. Les moteurs à injection directe vont devenir les fers de lance d’une nouvelle génération de technologies vertes. Cependant, pour que cette technologie réponde aux législations à venir, les émissions de particules doivent être réduites de manière conséquente, principalement grâce au contrôle précis de la pression de carburant dans la rampe commune.