Les atomes d’hydrogène sont extrêmement petits. Cela leur permet de pénétrer les matériaux solides selon un processus appelé perméation. Au fil du temps, les transmetteurs de pression peuvent cesser de fonctionner en raison de ce phénomène. Néanmoins, leur durée de vie peut tout de même être optimisée.

Dans les transmetteurs de pression piézorésistifs, la puce du capteur est enveloppée dans un liquide, généralement une huile. Cette partie est à son tour recouverte d’une membrane d’acier très mince, de l’ordre de 15 à 50 µm d’épaisseur. Parce que l’hydrogène présente une dimension atomique minuscule, ce gaz peut se diffuser à travers un réseau cristallin composé de métaux (voir infographie). Petit à petit, cette pénétration du gaz conduit à un décalage du zéro et à une courbure vers l’extérieur de la membrane d’acier. Le capteur de pression devient inutilisable.

Présentation des propriétés de l’hydrogène

Infographie: malachy120///AdobeStock

Les capteurs de pression entrent en contact avec l’hydrogène dans un large éventail d’applications, que ce soit dans la surveillance des réservoirs d’hydrogène, dans les sous-marins ou dans le secteur automobile. Dans ce dernier cas en particulier, l’hydrogène est de plus en plus utilisé dans le développement de systèmes d’entraînement alternatifs. De nombreux fabricants travaillent depuis plusieurs années à la conception de modèles intégrant des piles à combustible, et certaines villes ont d’ores et déjà opté pour des bus à hydrogène dans les transports en commun. Les avantages ne sont pas négligeables, étant donné que seuls l’hydrogène et l’oxygène entrent dans le processus de combustion. Au cours d’une réaction chimique, de l’énergie est produite sous forme d’électricité, avec une production nulle de gaz d’échappement (le produit de la combustion étant de la simple vapeur d’eau). En outre, l’hydrogène, à l’inverse des combustibles fossiles, est accessible en quantités inépuisables. Le développement a déjà fait des progrès importants, et il existe maintenant des modèles qui ne consomment que trois litres d’hydrogène aux 100 kilomètres, tandis qu’il est déjà possible, dans certains cas, de couvrir des distances d’environ 700 kilomètres avec un simple plein de gaz.

Dans cette branche, des transmetteurs de pression de haute précision, capables de contrôler les réservoirs à hydrogène des véhicules, s’avèrent nécessaires. Plus spécifiquement, la pression et la température qui règnent à l’intérieur du réservoir à hydrogène du véhicule doivent être contrôlées. En effet, les pressions peuvent aller jusqu’à 700 bars, et ce sur une large plage de température. Il est bien évidemment impératif que les transmetteurs de pression utilisés assurent leur fonction avec précision pendant une durée longue. Afin d’optimiser la durée de vie des capteurs dans les applications faisant intervenir l’hydrogène, plusieurs facteurs susceptibles d’exercer une influence doivent être pris en compte :

  • Plage de pression: Le débit de gaz qui traverse la membrane du capteur est proportionnel à la racine carrée de la pression de gaz. Une pression 10 fois plus faible va multiplier la durée de vie du capteur d’environ 3 fois.
  • Température: Le débit de gaz qui traverse la membrane du capteur augmente à des températures élevées, et dépend de la constante du matériau.
  • Épaisseur de la membrane: Le débit de gaz est inversement proportionnel à l’épaisseur de la membrane. L’utilisation d’une membrane de 100 µm au lieu de 50 µm d’épaisseur va doubler la durée de vie du capteur.
  • Superficie de la membrane: Le débit de gaz est directement proportionnel à la superficie de la membrane (le carré du diamètre de la membrane). Avec une membrane de Ø 13 mm au lieu de Ø 18,5 mm, la durée de vie du capteur est doublée.

Étant donné que des fluctuations de pression et de température importantes peuvent se produire à l’intérieur des réservoirs à hydrogène des véhicules, la durée de vie des capteurs ne peut pas être influencée par ces deux facteurs. Les facteurs que sont l’épaisseur et la superficie de la membrane ne peuvent également constituer qu’une solution limitée. Bien que la durée de vie puisse être améliorée par ces deux facteurs, l’amélioration n’est cependant pas encore optimale.

Revêtement en or : La solution la plus efficace

La perméabilité de l’or est 10 000 fois plus faible que celle de l’acier inoxydable. Avec le revêtement en or (0,1 à 1 μm) d’une membrane en acier inoxydable de 50 μm, la perméation peut être réduite sensiblement plus efficacement qu’avec un doublement de l’épaisseur de la membrane à 100 µm. Dans le premier scénario, le temps que va mettre un volume critique d’hydrogène gazeux à s’accumuler à l’intérieur du capteur de pression peut être augmenté d’un facteur de 10 à 100, tandis que dans le second cas, ce facteur n’est que de deux. Le pré requis pour cela repose sur des soudures optimisées et sans espaces, ainsi que sur un revêtement le plus exempt possible de défaut.

Image 1: Exemple d’un transmetteur de pression avec revêtement en or

En raison des propriétés de l’or face à la perméabilité de l’hydrogène, STS utilise en standard des membranes d’acier inoxydable revêtu d’or.

Abonnez-vous à notre newsletter

Abonnez-vous à notre liste de diffusion pour recevoir les dernière nouvelles et mises à jour de notre équipe.

Vous vous êtes enregistré avec succès!