Énergies renouvelables: le stockage de l’énergie dans les environnements offshore

Énergies renouvelables: le stockage de l’énergie dans les environnements offshore

Les énergies renouvelables deviennent de plus en plus populaires, à la fois sur terre et dans les grandes structures offshore. Cependant, un problème majeur limite actuellement la croissance de ce marché : l’énergie produite doit être déployée immédiatement, qu’elle soit issue des courants marins , du soleil ou du vent. Tout excédent qui ne peut être utilisé instantanément est irrévocablement gaspillé. En outre, les sources d’énergies renouvelables ont tendance à être instables en raison des changements soudains des conditions naturelles, ce qui affecte directement la production d’énergie. Pour solutionner ce problème, il est nécessaire de développer des moyens de stockage qui permettent une utilisation ultérieure de l’énergie.

La technologie de stockage d’énergie à double-compartiment

La technologie FLASC développée par des ingénieurs de la Faculté d’ingénierie de l’Université de Malte permet de stocker l’énergie en environnements offshore. Ils ont mis au point une procédure pour les systèmes offshore qui permet de stocker efficacement les excédents d’énergie à l’aide de dispositifs à air comprimé. Des solutions similaires existent déjà, mais ces techniques basées sur la pression hydrostatique sont assujetties au niveau de profondeur de l’eau. La technologie FLASC à double-compartiment permet quant à elle une plage de pression indépendante, quel que soit le niveau de profondeur de l’eau. De cette manière, les surplus d’énergie peuvent être stockés et libérés de manière sécurisée, à des intervalles pouvant être définis individuellement. Cela permet de garantir une production d’énergie qui n’est plus impactée par les conditions naturelles.

Des mesures précises avec les capteurs STS ATM/N/T

La technologie FLASC repose sur des niveaux de pression stables et constants de l’air comprimé. Pour y parvenir, FLASC utilise des capteurs STS ATM/N/T de haute qualité. Ces capteurs ultra sensibles mesurent la pression de l’air et de la température à trois endroits différents du système. Équipés de boîtiers robustes en titane, les capteurs STS sont parfaitement adaptés à une utilisation continue en eau de mer. Grâce au module intégré de détection de température PT100, ils peuvent couvrir une plage de mesure de températures allant de 5 °C à 80 °C. Les données collectées sont transférées vers le système SCADA, depuis lequel elles peuvent être surveillées en temps réel.

Sites contaminés: Des sondes de niveau résistantes sont nécessaires pour la décontamination des eaux souterraines

Sites contaminés: Des sondes de niveau résistantes sont nécessaires pour la décontamination des eaux souterraines

Qu’il s’agisse d’anciennes décharges, de décharges de charbon, d’anciens sites militaires ou de raffineries, il reste des terres contaminées et cela représente un danger pour l’homme et l’environnement. Pour la récupération de ces endroits, vous avez besoin de sondes de niveau résistant aux substances dangereuses agressives souvent présentes dans ces zones.

Les sites contaminés ne se caractérisent pas uniquement par des altérations du sol nuisibles à la santé et à l’environnement. En l’absence de mesures de sécurité (comme dans le cas des anciennes décharges) et en fonction des caractéristiques de la terre, les substances dangereuses pénètrent avec les pluies jusqu’à ce qu’elles atteignent les eaux souterraines. Selon le type d’utilisation, il est possible de trouver une série de diverses substances dangereuses, y compris:

  • composés de métaux lourds: cuivre, plomb, chrome, nickel, zinc et arsenic (semimétal)
  • substances organiques: phénols, huiles minérales, benzène, hydrocarbures chlorés (CHC), hydrocarbures aromatiques (HAP)
  • sels: chlorures, sulfates, carbonates

Décontamination de l’approvisionnement en eau

En ce qui concerne la remise en état des sites contaminés, outre le nettoyage des sols, le contrôle et la purification des eaux souterraines sont également essentiels. Sans l’utilisation de sondes de niveau fiables capables de résister à des conditions défavorables, ceci n’est pas possible.

Les étapes du processus de décontamination sont généralement les suivantes : l’eau souterraine contaminée est pompée à la surface et traitée. L’eau de rinçage filtrée obtenue est ensuite renvoyée à la source de contamination. Pour s’assurer que l’eau de rinçage ne s’écoule pas vers l’un des sites qui ne sont pas en contact avec la source de contamination, des systèmes hydrauliques actifs sont utilisés pour une infiltration sûre. L’eau est versée dans le sol à travers divers puits pendant le processus de décontamination proprement dit. Les conditions de pression générées forment, pour ainsi dire, une barrière assurant que l’eau de rinçage s’écoule dans la source de contamination. Des capteurs de niveau sont nécessaires pour guider et surveiller ce processus.

Naturellement, les sondes de niveau sont également utilisées à la fin des travaux de remise en état. En effet, après la fin des travaux, les sites en question sont surveillés pendant une longue période afin de vérifier tout changement dans le niveau de l’eau ou dans la direction de l’écoulement.

De plus, les sondes de niveau sont naturellement utilisées dans le cas d’applications actives potentiellement dangereuses pour l’environnement. Les sites d’enfouissement récents sont construits comme une piscine étanche. Le niveau d’eau sous la décharge est abaissé de sorte qu’en cas de fuites, l’eau ne puisse pas se retrouver dans les zones adjacentes. Ici aussi, les niveaux d’eau respectifs doivent être surveillés via les sondes de niveau.

Sondes de niveau dans l’eau contaminée: exigences élevées

Les utilisateurs qui travaillent dans le domaine de l’assainissement des sites contaminés doivent procéder très soigneusement lors du choix de la sonde de niveau appropriée. En raison du grand nombre de substances qui peuvent être dissoutes dans l’eau, il n’y a pas de solution qui fonctionne de manière fiable pour chaque situation. Nous devons considérer plusieurs aspects que nous illustrerons brièvement ci-dessous:

Les matériaux

Corps de la sonde

Dans la plupart des applications, un acier inoxydable de bonne qualité, comme celui utilisé par STS, est suffisant pour protéger la cellule de mesure contre les substances agressives. S’il y a contact avec de l’eau salée, vous devez opter pour un corps en titane. Si des effets galvaniques sont attendus, une sonde de niveau PVDF doit être sélectionnée.

Image 1: Sonde de niveau ATM / NC chimiquement résistante avec corps externe en PVDF

Câble de la sonde

Le choix du câble de la sonde est, selon notre expérience, plus critique que le choix d’un corps de sonde approprié. En raison des processus d’infiltration lent, la détérioration n’est pas immédiate. Souvent, la présence de dommages extérieur n’est pas visible et par conséquent, une attention particulière doit être prise lors de la sélection de la matière du câble. Si le matériau du câble n’est pas à 100% résistant, les éléments peuvent se propager à travers la gaine du câble et atteindre la puce du capteur.

Les utilisateurs STS peuvent utiliser des câbles PE, PUR ou FEP. Ce dernier peut également être utilisé dans le cas de très hautes températures jusqu’à 110 ° C. 

l’installation

Pose des câbles

Les anciennes décharges ou les sites industriels sont des environnements difficiles. Ce ne sont pas seulement les substances dangereuses qui compromettent la fonctionnalité des sondes de niveau utilisées. Des précautions doivent être prises pour s’assurer que la gaine du câble n’est pas endommagée par des charges mécaniques (par exemple des débris). De plus, les points de frottement et de flexion doivent également être évités. Nous recommandons donc l’utilisation de revêtements protecteurs spéciaux, tels que ceux proposés par STS.

Charge de traction

La résistance à la compression des sondes de niveau varie d’un fabricant à l’autre. En standard, toutes les sondes STS sont résistantes à la compression jusqu’à 250 mètres et jusqu’à cette profondeur, le câble est également conçu pour des charges de traction normales. Cependant, dans le cas de conditions d’installation difficiles, les utilisateurs doivent envisager d’utiliser un renfort de câble.

Fixation

En cas d’utilisation dans l’eau courante ou dans des réservoirs avec agitateurs, la sonde peut être alimentée soit avec un filetage G ½ à la sortie du câble (montage sur tube) soit avec un raccord à compression (15 mm).

Protection contre l’explosion

Dans les applications où diverses substances dangereuses sont attendues, une attention particulière doit être portée à la protection contre les explosions. Des informations à ce sujet sont fournies par la directive ATEX concernant les normes internationales.

La correction des données de niveaux d’eau en fonction des fluctuations des pressions barométriques

La correction des données de niveaux d’eau en fonction des fluctuations des pressions barométriques

Relevés piézométriques de l’aquifère karstique d’Otavi – analyse des données par calcul de l’efficacité barométrique.

Les principales méthodes permettant d’identifier et d’éliminer les effets de la pression barométrique dans les aquifères confinés et non confinés sont connues. Bien qu’il soit établit que les variations de la pression barométrique peuvent influer sur les mesures de niveaux d’eau, peu d’articles et de procédures permettent de gérer correctement les données piézométriques.

Connaître l’efficacité barométrique réduit les erreurs de calcul des surfaces piézométriques ainsi que les écarts des piézomètres lors des tests de pompage. Stallman (1967) a également suggéré que le mouvement de l’air à travers la zone non saturée et le décalage de pression qui en résultait pourraient aider à mieux décrire les propriétés d’un aquifère. Rasmussen et Crawford (1997) ont décrit la manière dont l’efficacité barométrique varie dans le temps dans certains aquifères, et la façon de calculer la fonction de réponse barométrique correspondante. Ils ont également montré que ce dernier paramètre est lié au degré de confinement de l’aquifère. Dans cet article, nous présentons une application de cette procédure dans un aquifère karstique non confiné situé dans le nord de la Namibie (monts Otavi), où quatre transducteurs absolus ont enregistré les variations des niveaux d’eau et les marées, pendant une période de 10 mois à 1 heure d’intervalle.

Cadre général

La zone à l’étude se situe dans la partie sud-est d’un plateau de 6 000 km2, à une altitude moyenne de 1 300-1 500 m, sur des collines atteignant 2 000 m d’altitude (voir ci-dessous).

Les formations rocheuses sont constituées d’épaisses couches calcaires dolomitiques et de stromatolithes (500 ans AA). Les strates ont été pliées en plusieurs synclinaux et anticlinaux généralement orientés est-ouest. La partie sud de la zone d’étude est bordée par une longue faille, avec diverses occurrences minérales (cuivre, vanadium, plomb, zinc). En raison de la fracturation élevée, de la faible couverture végétale et du manque de terre, le ruissellement superficiel est presque nul. Deux bassins d’eau naturelle (des dolines effondrées), de 100 à 200 m de large, sont situés plus au nord et en dehors de la zone du projet. La pluviométrie annuelle moyenne est de 540 mm (1926-1992), avec des pics au cours de l’été et entre décembre et mars. Depuis le milieu des années 70 et jusqu’en 2000, la région a connu une chute des précipitations qui, associées à l’activité minière (mines de Kombat, Tsumeb et Abenab), ont été responsables de l’abaissement de la nappe phréatique (jusqu’à 20-30 m à certains endroits).

Depuis 2005, cette tendance s’est inversée en raison de la réduction de l’activité minière et d’un nouveau régime météorologique.

Cadre hydrogéologique

Cette région est bien connue pour ses caractéristiques karstiques, et elle abrite de vastes lacs souterrains situés entre 70 et 120 m sous la surface du sol.

La zone est également classée comme l’un des aquifères les plus importants du pays (Département de l’hydrologie du Ministère de l’agriculture, de l’eau et du développement rural, zones E-F). Afin de recueillir des informations utiles dans cet environnement particulier et de localiser d’autres emplacements pour les forages d’eau, nous avons préparé deux cartes piézométriques (2007-2010) et installé 4 dans des points d’eau situés entre 2 et 4 km de la ferme Harasib (voir Illustration 2).

Illustration 2: Carte piézométrique (février 2007) et emplacements de trois enregistreurs de niveau d’eau.

La surface piézométrique de 2007 montre une zone de recharge, coïncidant avec les sommets topographiques et les infiltrations de pluie. De ce point, les directions d’écoulements souterrains sont sud-ouest et sud-est. Au cours de cette étape, nous avons concentré nos recherches pour définir :

  • Le type d’aquifère.
  • Les connexions aquifères entre le lac Harasib et le lac du Souffle du Dragon.
  • Les zones de recharge.

Des analyses chimiques des eaux de surface et des eaux profondes ont été effectuées en 2007, tandis que des lectures continues de la pression barométrique et des niveaux d’eau ont été effectuées sur une période de dix mois, de septembre 2010 à juin 2011. La recharge de l’aquifère commence lorsque les précipitations cumulatives dépassent 400 à 500 mm. L’épaisseur de la partie non saturée varie de 40 à 100 m. Considérant que cette valeur est proche de la pluviométrie annuelle moyenne et que cet aquifère est karstique et très fracturé, il convient de noter qu’une ou deux années de faibles précipitations sont suffisantes pour réduire considérablement le rendement exploitable.

L’efficacité barométrique et la fonction de réponse barométrique

Illustration 3: Valeurs de la période sèche (septembre – décembre).

Les mesures de niveau d’eau ont été analysées avec le logiciel BETCO (Laboratoires Sandia) afin d’éliminer les effets des changements de pression barométrique. Les valeurs mesurées et corrigées sont présentées dans l’Illustration 3 et se réfèrent à la période sèche (septembre – décembre), tandis que l’Illustration 4 montre les variations de la pression barométrique en fonction des niveaux d’eau qui sont utilisées pour le calcul du rendement barométrique.

Illustration 4: Différences entre les pressions barométriques et les niveaux d’eau pendant la période sèche (sept. – déc. 2010).

Dans tous les exemples, nous remarquons que:

  • Il existe une corrélation entre les valeurs mesurées et corrigées, même si l’amplitude est faible.
  • Il y a toujours une variation qui diminue dans les valeurs corrigées ; ce phénomène pouvant être attribué à d’autres effets non barométriques (marées terrestres, double porosité).
  • Les valeurs initiales de l’efficacité barométrique sont assez similaires (0,55 0,61).

L’illustration 5 représente la fonction de réponse barométrique. Cette fonction caractérise la réponse des niveaux d’eau sur la durée, jusqu’à un changement graduel de la pression barométrique. La fonction de réponse barométrique est essentiellement une fonction de temps écoulé depuis la charge imposée.

Illustration 5: Fonctions de réponse barométrique des trois points d’eau. La similarité des courbes (notamment celles du lac du Souffle du Dragon et du lac Harasib) suggère un aquifère non confiné et un éventuel facteur de double porosité.

Une concordance est observée sur les trois points d’eau. Par exemple, le lac du Souffle du Dragon présente une augmentation rapide à 0,5 et une décroissance à long terme à une valeur inférieure (0,2 à 0,3 après 20 heures), en raison du lent passage de l’air à travers les fractures. L’équilibre entre la pression externe et l’aquifère est atteint à une valeur de 0,1.

La forme des trois courbes indique un aquifère non confiné avec de bonnes liaisons hydrauliques, en particulier entre le lac du Souffle du Dragon et le lac Harasib (ce dernier étant à une distance de 2 km).

Cette corrélation a également été prouvée par des analyses isotopiques et chimiques effectuées en 2007 (Pr. Franco Cucchi, département de géologie, université de Trieste).

Les données recueillies confirment le comportement non confiné de l’aquifère, qui est bien fracturé et connecté hydrauliquement, et recouvert d’une couche non saturée épaisse et rigide. L’efficacité barométrique initiale est supérieure à celle calculée en dernier.

Marées terrestres et relevés des capteurs

Illustration 6: Niveaux d’eau dans le lac souterrain (en mètres au-dessus du niveau de la mer – ASL). L’élargissement ci-dessus montre de petites différences cycliques dues aux marées terrestres.

En ce qui concerne les marées terrestres, les données collectées sont encore rares, mais nous pensons qu’il est néanmoins intéressant d’illustrer certaines réflexions. Lorsqu’elles sont inspectées en détail, les courbes présentent un motif en zigzag distinct avec des pointes toutes les 10 à 12 heures (Illustration 6). Ce comportement corrobore des effets de marées terrestres, produisant de légers changements dans le volume des fractures et des pores et donc dans les niveaux d’eaux souterraines. Les séries de Fourier (Shumway, 1988) montre la structure harmonique des trois points d’eau dans l’Illustration 7 et les composantes des marées dans l’Illustration 8.

Illustration 7: Structure harmonique des trois points d’eau.

Illustration 8: Magnitudes des marées des principales composantes harmoniques (valeurs en pieds).

La zone proche du lac Harasib présente les valeurs les plus élevées pour la composante M2, ce qui peut être considéré comme l’indication d’une zone de transmissivité plus élevée (Merritt, 2004). Ce fait est en partie confirmé par la présence d’une fracture allongée (est-nord-est /ouest-sud-ouest) à proximité du lac Harasib.

Remarques finales

Les fluctuations des niveaux d’eau dans les aquifères ne sont pas uniquement dues aux variations de recharge. La pression barométrique et les marées font partie des préoccupations principales. Connaître les variations des pressions barométriques pour un site particulier permet de valider une carte piézométrique ou un test de pompage. Les transducteurs de pression modernes sont reconnus comme extrêmement utiles lorsqu’ils sont installés dans des trous de forage. Les variations des enregistrements selon le type d’aquifère et les graphiques peuvent indiquer le degré de confinement des niveaux surveillés.

Les paramètres utiles qui caractérisent ce comportement sont l’efficacité barométrique et la fonction de réponse barométrique. Cette dernière caractérise un aquifère comme « non confiné » lorsque les valeurs initiales sont élevées, puis proches de 0 sur une réponse à long terme. À contrario, un aquifère est défini comme « confiné / semi-confiné » lorsque les valeurs restent constantes, ou proches de 1 sur une réponse à long terme. Il est parfois nécessaire de supprimer les effets barométriques pour interpréter correctement un test de pompage ou pour dresser une carte piézométrique. Enfin, une analyse particulière des données des niveaux d’eau permet de calculer les composantes harmoniques dues aux marées, et donc certaines caractéristiques hydrogéologiques.

Cette approche théorique a été appliquée aux données recueillies pour l’étude de projet d’un aquifère karstique non confiné dans le nord de la Namibie. Les niveaux d’eau ont été surveillés pendant une période de 10 mois, avec des lectures horaires au moyen de quatre transducteurs. Les données ont confirmé les hypothèses générales retenues lors des études précédentes et ont souligné l’importance de l’utilisation de tels instruments pour l’évaluation des aquifères, en montrant en particulier :

  1. Le rôle de la recharge dû aux précipitations et à la forte transmissivité autour de la région du lac Harasib.
  2. La bonne connexion hydraulique et la conductivité de l’aquifère.
  3. L’absence de couches de confinement (aquifère profond et rigide non confiné).
  4. L’effet de stockage de la partie non saturée, située au-dessus de la nappe phréatique, qui commence à se drainer lorsque les pluies dépassent 400-500 mm.
  5. Les autres effets de pression, tels que les marées terrestres, peuvent être mis en évidence à l’aide de transducteurs de niveau d’eau.

Remerciements

Namgrows est l’abréviation de « Namibian Groundwater Systems » (Système namibien de gestion des eaux souterraines), un projet mis en place par l’auteur et le collègue Gérald Favre, avec la participation de géologues et de spéléologues de 4 pays différents (Italie, Suisse, Namibie, Afrique du Sud). Le projet a été soutenu en Namibie par l’ing. Sarel La Cante et son épouse Leoni Pretorius (ferme Harasib).

La société STS – Italia nous a sponsorisés en fournissant les capteurs de niveau d’eau ainsi qu’une assistance technique.

Je souhaite également remercier le Prof. Todd Rasmussen (Université de Géorgie à Athènes) pour ses précieuses observations sur les données, en particulier sur l’efficacité barométrique et les marées terrestres.

 Source: Dr. Alessio Fileccia / Consulting Geologist

Des enregistreurs de niveau surveillent les niveaux d’eau de Venise

Des enregistreurs de niveau surveillent les niveaux d’eau de Venise

La place Saint Marc ne sera jamais inondée : les enregistreurs de données de niveau de STS sont sur place pour mesurer en permanence les niveaux des eaux souterraines de la place Saint Marc. Ils sont particulièrement robustes et adaptés pour des applications de scénarios divers.

En 2003, la société S.P.G a commencé à installer divers enregistreurs de données de niveau des eaux souterraines sur la place Saint Marc à Venise. Ils ont été conçus pour répondre à des exigences et dispositions spécifiques, en particulier la capacité à résister à une immersion de plusieurs jours dans de l’eau salée. En effet, la place Saint Marc est régulièrement inondée pendant les marées. Le site fonctionne en liaison avec les efforts investis par les autorités de régulation de l’eau pour protéger les lagons et la ville de Venise des inondations.

Le groupement de Venezia Nuova a équipé le quai opposé à la place Saint Marc de systèmes technologiques novateurs. Le défi consistait en la surveillance du flux des eaux souterraines qui se déplaçaient progressivement de la zone du site aux bâtiments situés derrière. À la demande des clients, les enregistreurs de données de STS ont été installés pour mesurer en continu les fluctuations du niveau des eaux souterraines.

Les enregistreurs de données des eaux souterraines permettent une mesure simultanée du niveau, de la température et de la conductivité dans des plages de 0…50 cmWS à 0…250 mWC, de -5 à 50 °C et de 0,020 à 20 mS/cm. Si nécessaire, l’utilisateur final peut à tout moment mettre à jour une unité de transmission des données. L’enregistreur est simple et facile à utiliser. Il est doté d’une mémoire de mesure élargie allant jusqu’à 1,5 millions de lectures et le diamètre de sa sonde est de seulement 24 mm ou 10 mm.

Le dispositif de plug-in permet également de brancher une extension de câble. Les nouvelles fonctions logicielles peuvent être mises à jour sans que l’utilisateur ait à retourner l’appareil. Les batteries au lithium se changent sur place en peu de temps. Les données peuvent être transférées au format ASCII ou XML et traitées ensuite avec des logiciels standards tels qu’Excel. Des intervalles de sauvegarde de données variables dépendant de la pression ou du temps permettent des mesures polyvalentes.

L’utilisation de matériaux divers comme l’acier inoxydable, le titane, le PUR, le PE ou le câble Téflon permet une haute tolérance au médium dans la plupart des applications, comme les déchetteries, les sites contaminés, les essais de pompe, les alertes inondations et les enregistrements évacuation/inondation des bassins de récupération d’eau de pluie.

Original publication: Konstruktion magazine

Les enregistreurs de données pour la mesure des niveaux d’eau

Les enregistreurs de données pour la mesure des niveaux d’eau

Les experts en gestion de l’eau de l’Institut de technologie de Karlsruhe (KIT) ont construit un barrage souterrain, avec une centrale hydroélectrique intégrée, dans une caverne karstique de l’île indonésienne de Java. La centrale électrique, située à 100 mètres sous terre, fournit maintenant une eau abondante pendant la saison sèche. Deux enregistreurs de données mesurent les niveaux d’eau en amont et en aval du barrage. Le niveau de l’eau en amont atteint 15 à 20 mètres, tandis que le niveau en aval (où l’eau est dirigée vers la turbine) atteint un maximum de 2 mètres.

La région karstique de Gunung Kidul, sur la côte sud de Java, est l’une des régions les plus pauvres d’Indonésie. Le sol est trop stérile pour un approvisionnement abondant, et les eaux vives sont à sec pendant la saison sèche. L’eau de la saison des pluies disparaît assez rapidement, mais elle s’accumule dans un système de grottes souterraines. Ce réservoir d’eau naturel est maintenant exploité avec une centrale électrique souterraine. Même pendant la saison sèche, plus de 1 000 litres d’eau par seconde s’écoulent dans la grotte de Bribin, ce qui en fait l’emplacement idéal pour ce barrage. Au lieu de turbines complexes, l’énergie mécanique nécessaire au fonctionnement des pompes d’alimentation est générée par des pompes de circulation à inversion de sens. Les cinq pompes d’alimentation fonctionnent en parallèle et offrent une excellente rentabilité car les coûts d’exploitation et de maintenance sont très faibles. Les pompes d’alimentation envoient une partie de l’eau vers un lac de montagne situé à 220 mètres d’altitude nommé « Kaligoro ». La phase de construction du barrage, qui était la principale difficulté de ce projet, a été réalisée avec succès. La grotte a rempli son rôle de rétention d’eau et le barrage a atteint sa hauteur critique de 15 mètres.

En mars 2010, l’installation a été remise aux autorités indonésiennes. Elle fournit désormais jusqu’à 70 litres d’eau par jour et par personne à près de 80 000 habitants. Auparavant, cette population ne disposait que de 5 à 10 litres par jour pendant la saison sèche, pour l’hygiène personnelle, le ménage et l’élevage. À titre de comparaison, les français utilisent en moyenne 148 litres d’eau par jour et par personne.

La fonction des enregistreurs de pression

Les enregistreurs de pression mesurent les niveaux d’eau en amont et en aval du barrage. Le niveau normal est de 15 mètres, mais il peut atteindre 20 mètres lors de fortes pluies. Les autres sondes mesurent les niveaux d’eau de manière immergée, en particulier à l’endroit où l’eau est dirigée vers la turbine. Des niveaux allant jusqu’à 2 mètres sont enregistrés dans cette zone. Les enregistreurs de pression de STS ont été choisis en raison de leur capacité de surcharge élevée (3 fois la pleine échelle), de leur faible écart (0,1 % maximum) et d’une stabilité accrue à long terme comprise entre 0,1 % et 0,5 % PE par an.

Ces enregistreurs de niveau couvrent des plages de pression comprises entre 0 et 100 mbars et 0 et 600 bars, permettant ainsi des mesures de niveau allant de 0 à 100 cmH2O et 0 à 6000 mH2O. L’intervalle de mesure lui-même est variable entre 0,5 secondes et 24 heures. Ces appareils se distinguent par un diamètre de sonde étroit et une mémoire de mesures pouvant atteindre 1,5 million de valeurs mesurées. De plus, leurs batteries au lithium peuvent être échangées sur site en un rien de temps.

Les intervalles d’enregistrement des données sont ajustables en fonction de la pression ou de la durée et permettent des mesures flexibles. Grâce à l’utilisation de divers matériaux (tels que l’acier inoxydable, le titane, le polyuréthane, le polyéthylène ou le téflon), ils disposent d’une tolérance élevée aux fluides et permettent des applications variées. Outre l’enregistrement des niveaux d’eaux (souterraines, puits, forages, lacs et rivières), ces enregistreurs de niveau conviennent également aux tests de fuites de canalisations de gaz, d’eau et autres conduites, ainsi qu’à l’analyse et aux tests de pression des canalisations de chauffage collectif. Ils ont également fait leurs preuves de manière optimale dans les stations de contrôle de pression de gaz et dans la vérification d’une pression d’alimentation constante.

Sources: Karlsruhe Institute of Technology (KIT) – Institute for Water and River Basin Management (IWG)

La force de l’eau : l’énergie renouvelable des mers et des océans

La force de l’eau : l’énergie renouvelable des mers et des océans

L’idée de dompter la force de la mer pour produire de l’énergie n’est pas nouvelle. Le défi principal réside dans le développement de systèmes de conversion d’énergie qui restent économiques tout en impactant faiblement l’environnement. C’est dans ce cadre qu’un projet très prometteur intitulé REWEC3 est né en Italie.

Le convertisseur d’énergie de résonance des vagues (REWEC3) est une technologie avancée qui produit de l’énergie électrique à partir de l’énergie des vagues en mer. Le premier exemplaire de cet instrument a été construit avec succès dans le port de Civitavecchia. Son fonctionnement est basé sur les systèmes de colonne d’eau oscillante (OWC).

Les colonnes d’eau oscillantes présentent un grand potentiel de source d’énergie renouvelable tout en ayant un faible impact sur l’environnement. Lorsque les niveaux d’eau autour et à l’intérieur d’une colonne d’eau oscillante montent, ils produisent un mouvement d’eau qui pousse l’air dans une chambre de collecte dans laquelle l’air est ensuite déplacé d’avant en arrière au sein d’un système de prise de force (PDF). Le système PDF converti, à son tour, ce mouvement d’air en énergie. Parmi les modèles qui convertissent le mouvement d’air en électricité, le système PDF a la forme d’une turbine bi-directionnelle. Indépendamment du sens du flux d’air, la turbine tourne ainsi toujours dans la même direction fournissant ainsi de l’énergie continue.

Le système REWEC3 de Civitavecchia est né d’un projet de recherche de l’université méditerranéenne de la région de Calabre et est utilisé aujourd’hui par la société Wavenergy.it. L’installation se présente essentiellement sous la forme d’un caisson renforcé en béton. Ce caisson est doté d’un conduit vertical sur le côté faisant face aux vagues (1), qui présente une ouverture à la mer (2) sur son côté supérieur et s’ouvre à l’opposé sur une chambre intérieure (3) par une ouverture plus basse (4). Cette chambre intérieure contient de l’eau dans sa partie basse (3a) et une poche d’air dans sa partie supérieure (3b). Une conduite d’air (5) connecte cette poche d’air à l’air ambiant par le biais d’une turbine à auto-redressement (6). Les mouvements des vagues créent des variations de pression à l’entrée du conduit vertical (2). Par conséquent, l’eau à l’intérieur du conduit monte et retombe à l’intérieur du conduit (1). Cela entraîne la compression ou l’expansion de la poche d’air dans la partie supérieure du conduit. L’air circule à l’intérieur de la conduite d’air (5) puis fait tourner la turbine à auto-redressement (6).

Le principe des installations REWEC3 exploite le mouvement des vagues dans la mer pour générer de l’électricité. L’air à l’intérieur de la chambre à air est alternativement compressé (par les pics de vagues) et décompressé (par les creux de vagues) de sorte qu’un flux d’air alternatif est créé dans la conduite qui, à son tour, entraîne une turbine à auto-redressement. L’énergie électrique est ensuite produite par un générateur coaxial.

Les avantages des installations REWEC3 dans la production d’électricité parlent d’eux-mêmes:

  • elles n’impactent le paysage car elles sont à peine visibles de l’extérieur.
  • elles absorbent l’action des vagues et modèrent l’impact des tempêtes sur la côte.
  • la faune marine ne risque rien grâce à la position élevée des turbines.
  • Une installation d’un kilomètre de long peut produire 8 000 MWh par an.

Un système tel que REWEC3 nécessite impérativement une surveillance fiable et rapide des différences de pression issues des vagues. Suite à toute une série de tests exhaustifs, les chercheurs de l’université méditerranéenne ont opté pour les capteurs de niveau de haute précision de STS ATM.1ST/N. Les éléments qui ont été décisifs pour le choix des transmetteurs de pression ATM.1ST/N transmetteurs de pression ont été les temps de réponse très courts de < 1ms / 10 à 90 % FS ainsi que leur grande stabilité sur le long terme sur une plage de température étendue. De plus, le fait que les instruments de mesure de STS soient facilement adaptables à toutes sortes d’équipements grâce à leur structure modulaire est un atout indéniable. Les capteurs de niveau ATM.1ST/N installés peuvent même être facilement configurés pour être utilisés avec les collecteurs de données de National Instruments.

Image Source: Wavenergy.it

Abonnez-vous à notre newsletter

Abonnez-vous à notre liste de diffusion pour recevoir les dernière nouvelles et mises à jour de notre équipe.

Vous vous êtes enregistré avec succès!