Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Aéronautique Archives - STS France
Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Les mesures de pression dans les compartiments moteur des avions

Les mesures de pression dans les compartiments moteur des avions

Comme de nombreux ingénieurs l’ont constaté, les mesures de pression effectuées dans les compartiments moteur des avions peuvent être une opération délicate et frustrante. La chaleur élevée, les vibrations, le manque d’espace, et une multitude d’autres facteurs rendent cette opération difficile. Obtenir des mesures cohérentes et précises dans ce type d’environnement est un réel challenge, qui nécessite souvent des heures, des jours, voire des mois de tests ! Dans l’aéronautique, nous avons besoin de capteurs qui résistent à des conditions changeantes et qui sont capables de fournir des résultats précis et reproductibles. En tant qu’ingénieurs, le caractère reproductible d’un résultat est une élément fondamental de notre spécialité. Heureusement pour nous, STS a relevé le défi en proposant une gamme complète de capteurs de pression qui répondent à nos exigences spécifiques : températures, dimensions, matériaux d’étanchéité et signaux de sortie. L’article suivant détaille notre utilisation des capteurs de pression STS et la manière dont ils répondent à nos impératifs et exigences.

Revenons avec notre exemple de compartiment moteur, et attardons-nous sur les mesures de pression d’huile. L’un des premiers éléments à considérer pour un capteur de pression destiné à mesurer la pression d’huile est sa résistance à la température. À proximité d’un moteur d’avion les températures sont particulièrement élevées, et cette caractéristique soulève certaines questions : Le capteur thermique peut-il être monté seul ou faut-il l’équiper d’un bouclier thermique ? Et plus important encore : Continuera-t-il de fonctionner correctement lorsque les composants commenceront à chauffer ? La dernière chose que les pilotes veulent voir sont des mesures de pression d’huile erratiques ! Heureusement, la gamme de capteurs de pression STS offre une excellente résistance à la température (jusqu’à 125 °C). Cette caractéristique répond à nos préoccupations initiales en matière de résistance aux températures élevées. Le capteur peut ainsi être monté à l’emplacement souhaité du compartiment moteur, sans risques d’interférences liées à la chaleur. En outre, cela nous permet de modifier, ajuster et affiner l’emplacement du capteur sans se soucier de la fiabilité des résultats en cas d’augmentation de la température. Cette solution offre une excellente flexibilité pour effectuer nos tests.

La compacité du capteur est également une caractéristique cruciale. Un capteur volumineux et disgracieux soulèverait sans doute quelques sourcils dans cet environnement de haute technologie. Dans l’aéronautique, l’espace est toujours une contrainte. Heureusement, STS a conçu un capteur de pression compact et sobre qui permet un montage pratique dans l’ensemble des zones de tests. Les dimensions des capteurs STS varient en fonction des usages, mais grâce aux options avancées de personnalisation (que nous détaillerons plus loin) ils sont généralement de dimensions inférieures ou égales à 50-60 mm. Leur petite taille permet un montage facile à l’aide de pinces Adel ou de tout autre collier de fixation standard. Cela évite de perdre du temps à concevoir un schéma de montage personnalisé, ou d’imaginer une nouvelle méthode de fixation compliquée à chaque fois que le capteur doit être déplacé pour optimiser les lectures de pression d’huile. Cette caractéristique offre un réel gain de temps et permet d’effectuer des séries de tests de manière rapide et efficace.  

Le dernier facteur essentiel pour nos tests de pression est la personnalisation. La plupart des capteurs de pression disponibles sur le marché pour ce genre de tests ont une portée de fonctionnement limitée. Ils sont configurés pour offrir des résultats optimaux dans une plage de pression spécifique, pour une fréquence de mesure spécifique, et avec une conception spécifique. Les capteurs de pression STS, quant à eux, offrent plusieurs options de personnalisation qui permettent de les adapter à des besoins spécifiques.  

Pour notre exemple, nous avons également besoin d’un matériau d’étanchéité qui ne contamine pas les huiles et qui ne se dégrade pas avec une exposition constante. STS propose plusieurs options de joints de capteurs, y compris des élastomères EPDM et Viton, pour assurer que les capteurs fonctionnent de manière optimale. Alternativement, nous pouvons opter pour des joints métalliques qui offrent également de très bons résultats. Nous avons aussi besoin d’une connexion à membrane frontale, un câble  polyuréthane, et un signal de sortie en 20 mA. STS peut fournir tout cela, ainsi que bon nombre d’autres combinaisons, pour garantir que le raccordement au processus, les signaux de sortie, le raccordement sous pression et les joints d’étanchéité, correspondent exactement à ce dont nous avons besoin. En somme, les capteurs sont conçus sur mesure pour nos tests et ne nécessitent aucune modification de nos procédures.

En résumé : Nous avons besoin de capteurs de pression pour effectuer des séries de tests de pressions d’huile, et de nombreux facteurs fluctuants sont à considérer : les températures, les méthodes de montage, les plages de pression, et un grand nombre d’autres facteurs. Il nous faut des capteurs de pression capables de répondre à ces impératifs et qui offrent des résultats précis. Les capteurs de pression STS permettent de résoudre ces problèmes. Leur capacité de résistance à des températures et à des pressions élevées, les solutions personnalisées de joints, de raccords pression, et de signaux de sortie, ainsi qu’une excellente conception globale, permettent d’intégrer ces capteurs de manière transparente dans tous types de tests, sans devoir modifier ou adapter nos procédures.

Les tests de pression hydraulique des trains d’atterrissage

Les tests de pression hydraulique des trains d’atterrissage

Imaginez-vous au commande de votre propre avion par une belle journée ensoleillée. Vous préparez votre approche sur la piste d’atterrissage et actionnez l’interrupteur pour activer le circuit hydraulique du train d’atterrissage. Soudain, une alarme de basse pression retentie et le train d’atterrissage refuse de se déployer. Ça sonne comme un vrai problème! Entre deux respirations saccadées, vous aurez probablement quelques mots tendres à l’attention des ingénieurs qui ont conçu ce système hydraulique. Tout pilote est en droit d’exiger un système d’atterrissage fiable et sans faille, n’est-ce pas? En tant qu’ingénieurs, il est de notre responsabilité de concevoir des systèmes hydrauliques irréprochables. Mais comment garantir une parfaite fiabilité? Bien que les composants, les caractéristiques et les attributs d’un avion soient différentes d’un appareil à un autre, un facteur universel permet de garantir une réelle fiabilité: les tests de pression hydraulique! Lors de ces tests, nous mettons à l’épreuve les systèmes, nous tentons de les endommager, puis nous les testons à nouveau! Nous avons donc besoin de capteurs de pression capables d’offrir des mesures cohérentes et précises pour analyser les variables de nos systèmes hydrauliques et les ajuster finement. Dans la suite de cet article, nous explorons les capacités d’un capteur de pression qui répond exactement à nos impératifs: le capteur haute précision ATM.1ST de STS.

Pour développer notre schéma de mesure des pressions hydrauliques, nous devons d’abord déterminer les données exactes que nous souhaitons collecter. Le terme «pression» est un terme générique qui englobe de nombreux composants d’un système hydraulique: la pression de l’accumulateur, la pression d’alimentation de la pompe, la pression du régulateur, la pression de décharge, etc. Heureusement, STS a mis au point un capteur de pression capable de collecter des données dans n’importe lequel de ces sous-composants. Le capteur haute précision ATM.1ST de STS est conçu selon une approche modulaire et adaptable. Pour nous ingénieurs, cela nous permet de choisir les caractéristiques et les capacités de chaque sous-composant du capteur afin que le dispositif de mesure soit parfaitement adapté à l’environnement auquel il est destiné.

Attardons-nous sur les sous-composants de ce capteur. Premièrement, nous avons le choix des matériaux pour presque chaque partie du capteur afin de garantir une excellente solidité et durabilité d’ensemble. Par exemple, le boîtier et le transducteur peuvent être construits en acier inoxydable ou en titane, en fonction des pics de pression possibles et de la configuration hydraulique.  

La sélection des matériaux ne se limite pas uniquement au boîtier. Nous pouvons également choisir le matériau du joint pour notre capteur: élastomères Viton, EPDM, Kalrez et NBR. Étant donné que le fluide hydraulique est le même dans tout le système de train d’atterrissage, le matériau choisi pour le joint pourra être employé dans l’ensemble du système. L’un des autres facteurs qui nécessitent une cohérence d’ensemble est la précision globale des capteurs. Heureusement, la gamme de capteurs de haute précision ATM.1ST de STS répond parfaitement à cette caractéristique. Ces capteurs bénéficient de précisions de 0,25 %, 0,1 % et 0,05 % PE et permettent de garantir la précision et la cohérence de nos données tout au long des tests.

Les deux dernières sélections modulaires qui sont déterminantes pour nos tests de train d’atterrissage sont les connexions électriques et les raccords de pression. Nous pouvons choisir entre des câbles en polyuréthane, en polyéthylène ou en éthylène propylène fluoré, ainsi qu’une gamme de connecteurs différents. Le choix des raccords de pression, des diaphragmes, des connecteurs DIN et autres éléments, est entièrement à notre discrétion. Bien que ce grand nombre de combinaisons différentes puisse sembler un peu écrasant, cela nous permet de constituer un capteur de pression qui s’insérera de manière optimale dans nos configurations de tests, sans entraîner de modification particulière de la configuration ou des processus.  

Revenons maintenant à nos essais de train d’atterrissage. Au fur et à mesure que nous développerons et testerons le système hydraulique pour obtenir un fonctionnement parfait du train d’atterrissage, nous aurons besoin de données provenant de plusieurs emplacements dans le système. Comme mentionné ci-dessus, nous disposons d’un accumulateur qui permet d’atténuer les variations de pression dans le système. En tant qu’ingénieurs, nous devons pouvoir définir ces variations de manière précise. Cela semble être un emplacement parfait pour un capteur de test!

Le régulateur de pression nécessite également une surveillance accrue. Lorsque la pression fluctue en raison de l’ouverture et de la fermeture des vannes, ou de toute irrégularité dans le système, le régulateur se déclenche pour garantir que la pression reste dans la plage spécifiée. Il s’agit donc d’un autre élément crucial à surveiller lors du développement de notre train d’atterrissage. Heureusement, nous disposons maintenant des ressources nécessaires pour choisir un capteur de pression parfaitement personnalisé et qui s’intégrera facilement dans le système.

En résumé: Nous sommes chargés de développer un système de train d’atterrissage fiable via un programme de tests rigoureux. Le système hydraulique d’un tel mécanisme est extrêmement diversifié en termes de composants et d’emplacements potentiels pour les capteurs. Heureusement pour nous, STS a développé une petite merveille: le capteur de pression ATM.1ST. Ce capteur nous permet d’avoir une juridiction presque complète sur tous les aspects du capteur, y compris les matériaux, la précision, les joints et les connecteurs électriques. Pour faire court, ce capteur de haute précision nous permet de concevoir un processus de test simplifié et robuste, dans lequel les capteurs de test complètent notre configuration existante.

Abonnez-vous à notre newsletter

Abonnez-vous à notre liste de diffusion pour recevoir les dernière nouvelles et mises à jour de notre équipe.

Vous vous êtes enregistré avec succès!