Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Détecteur de Pression Archives - Page 2 of 3 - STS France
Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Les moteurs à hydrogène à injection directe peuvent-il remplacer les moteurs turbo-diesel?

Les moteurs à hydrogène à injection directe peuvent-il remplacer les moteurs turbo-diesel?

Jadis emblématique, le moteur Diesel est aujourd’hui tombé en disgrâce et semble être parvenu au terme de son histoire. Même les grandes villes comme Paris, qui auparavant incitaient l’utilisation du diesel, demandent aux constructeurs l’arrêt de la production des moteurs Diesel d’ici à l’horizon 2025. Bien que cet échéancier semble peu probable, cela témoigne des préoccupations grandissantes des nations face aux problèmes de réchauffement climatique et de pollution atmosphérique.

Pour répondre aux réglementations de plus en plus strictes en matière d’émissions, les constructeurs étudient de nouvelles formes de propulsion, souvent inédites: du tout électrique à l’hybride, en passant par les piles à combustible à l’hydrogène; toutes les solutions sont envisagées.

Les technologies à l’hydrogène suscitent tout particulièrement l’intérêt des chercheurs du monde entier. L’hydrogène est considéré comme un carburant propre qui pourrait bien alimenter les transports de demain.

La principale différence entre l’hydrogène et les hydrocarbures classiques réside dans la grande capacité stœchiométrique de l’hydrogène, allant de 4 à 75 % en volume d’hydrogène dans l’air. Dans des conditions idéales, la vitesse de combustion de l’hydrogène peut atteindre quelques centaines de mètres par seconde. Ces caractéristiques le rendent très efficace lors de la combustion de mélanges pauvres à faibles émissions de NOx.

Quarante ans d’injection à hydrogène

L’injection à hydrogène existe depuis les années 1970 et consiste à injecter de l’hydrogène dans un moteur à combustion interne modifié. Cela permet d’obtenir une combustion plus propre, avec plus de puissance et moins d’émissions.

Les anciens systèmes à basse pression, qui sont encore utilisés de nos jours, injectaient l’hydrogène dans l’air avant de l’introduire dans la chambre de combustion. Mais étant donné que l’hydrogène brûle 10 fois plus vite que le diesel, plusieurs problèmes ont été rencontrés pour augmenter le taux de combustion. Voici les principaux problèmes:

  • Retours de gaz dans le collecteur.
  • Préallumage et/ou auto-inflammation.

Le meilleur moyen de surmonter ces problèmes consiste à installer un système d’injection directe à haute pression qui assure l’injection de carburant dans la course de compression.

 

L’optimisation du processus de combustion grâce à des mesures précises de la pression

Pour ce faire, la caractérisation de l’injection doit être fidèle aux besoins du moteur. Cela ne peut être accompli qu’en collectant les données de test concernant la température (collecteur, gaz d’échappement et liquide de refroidissement), la pression (cylindres/suralimentation, conduite de carburant et injecteurs), les turbulences dans le collecteur et la chambre de combustion, et la composition du gaz.

La formation du mélange, l’allumage et le processus de combustion, sont généralement étudiés à travers deux séries de tests. Le but du premier test est d’obtenir des informations sur la concentration et la distribution transitoires de l’hydrogène au cours du processus d’injection.

Au cours de ce test, une fluorescence induite par laser est utilisée comme technique de mesure principale pour étudier le comportement de l’hydrogène sous compression et à l’allumage. En utilisant une chambre de combustion à volume constant ayant les mêmes dimensions que le moteur Diesel (ce qui implique que le volume dans la chambre de combustion à volume constant est égal au volume dans le cylindre au point mort haut), de l’hydrogène sous pression est injecté dans l’air à travers une soupape à pointeau à commande hydraulique.

En utilisant des capteurs de pression de haute qualité, il est possible d’étudier l’effet de différentes pressions d’injection sur le processus de combustion. L’observation du comportement et du volume des gaz non brûlés permet de réduire considérablement le temps nécessaire pour optimiser le sens et la pression d’injection de différentes buses d’injecteurs.

Et en utilisant un logiciel spécifique, il est possible de déterminer le délai d’allumage, qui dépend de la température et de la concentration d’hydrogène dans l’air à une pression donnée. Il est important que les lectures de pression soient enregistrées avec précision, dans une plage de pressions allant de 10 à 30 MPa.

En outre, cette méthode permet de définir les zones dans lesquelles les jets d’injection provoquent des conditions d’auto-inflammation, ce qui est utile à la mise au point de systèmes d’injection optimisés pour la conversion d’un moteur Diesel vers l’hydrogène.

Lors de récents essais menés par un grand constructeur automobile, la version optimisée d’un moteur à injection d’hydrogène haute pression a montré une augmentation prometteuse de la puissance, une réduction de la consommation de carburant, et un taux de rendement de 42 %. Ces valeurs correspondent à celles des meilleurs moteurs turbo-diesel.

Sur la base de ces résultats, il semble que les travaux d’optimisation de la pression des systèmes à 30 MPa seraient susceptibles d’offrir une source d’énergie propre pour les transports de demain.

Minimiser les émissions de polluants grâce aux technologies de détection de la pression

Minimiser les émissions de polluants grâce aux technologies de détection de la pression

Les mesures de rappels de véhicules ont de vastes conséquences dans l’industrie automobile. Les constructeurs subissent généralement des baisses de réputation conséquentes et de fortes augmentations des coûts. Les propriétaires de véhicules, quant à eux, réagissent avec colère et incertitude. Le scandale de ces dernières années sur la manipulation des niveaux d’émissions polluantes a provoqué de vives réactions. Les autorités gouvernementales ont alors réagi en imposant de nouvelles procédures de test.

L’industrie automobile a déclenché une véritable crise de rappels de véhicules au cours de ces deux dernières années. Rien qu’aux États-Unis, près de 51 millions de véhicules ont été rappelés en 2015 par l’Administration américaine de la sécurité de la circulation routière (NHTSA). Ce chiffre dépasse de loin le nombre de véhicules vendus cette même année, bien que les véhicules rappelés n’étaient pas tous liés au scandale des émissions polluantes. Près de 11 millions de ces véhicules proviennent du scandale du « dieselgate » impliquant le constructeur Volkswagen. Les pertes engendrées sont colossales.

La pression exercée sur les coûts de production et la complexité croissante des systèmes intégrés aux véhicules engendrent une propension accrue aux erreurs et aux mesures de rappel qui en résultent. Ce défi doit être relevé par le biais de systèmes de contrôle améliorés et encore plus fiables – de la part des constructeurs et des fournisseurs, ainsi que des organes de contrôle gouvernementaux qui sont responsables du suivi des spécifications légales. Un équipement de mesure de haute qualité est donc nécessaire afin de fournir des résultats précis dans diverses conditions et garantir une conformité (ou post-conformité) optimale aux normes en vigueur. Un important arriéré de demandes a depuis été ouvert à cet égard.

Les meilleures technologies de mesure de pression pour les meilleurs moteurs à combustion

Dans le développement des moteurs à combustion, des capteurs de pression de haute précision sont nécessaires. Lors de l’analyse de la combustion, ils permettent des mesures exactes de la pression dans les cylindres, ainsi que des pressions d’admission et d’échappement. Les capteurs de pression absolue (échanges de gaz) et les capteurs haute pression (mesures de la pression d’injection) doivent également être de la plus haute qualité car le potentiel de réduction des polluants est très conséquent, en particulier pour la pression d’injection. Les particules des moteurs à essence peuvent être réduites par une augmentation de la pression d’injection. Certains constructeurs s’emploient déjà à augmenter les pressions d’injection jusqu’à 350 bars, voire plus.

Les mesures mobiles d’émissions polluantes sont en cours

Le Nouveau cycle européen de conduite (NEDC) est en cours d’introduction par les organismes de réglementation des États pour les mesures d’échappement et de consommation. Comme nous l’avons vu, les procédures de test ont donné aux constructeurs la liberté d’influencer les mesures à leur avantage, puisque les véhicules ne sont examinés que dans une installation de tests et non dans des conditions réelles.

Lorsque le scandale de manipulation des émissions polluantes a éclaté, le Comité d’experts de l’Union européenne a décidé en mai 2015 que les émissions d’homologation de type devaient être testées dans des conditions de conduite réelles (RDE) à partir de la fin 2017. Les conditions de laboratoire pour les contrôles conventionnels seront complétées par une procédure empêchant l’utilisation de dispositifs de coupure pendant les tests. Le véhicule à tester sera examiné sur une piste ouverte et donc soumis à des conditions variables. En outre, des procédures aléatoires de freinage et d’accélération seront également effectuées.

 

Relever ces nouveaux défis en utilisant des solutions modulaires de capteurs de pression

La procédure RDE impose des contraintes particulières aux technologies de mesure de pression. Pour l’optimisation des valeurs d’émissions des moteurs à combustion, l’accent est mis sur la mesure de la pression absolue et relative. Compte tenu des nouvelles procédures de mesure, les technologies de mesure doivent fonctionner de manière fiable dans une plage de températures étendue. Que les tests soient effectués dans des conditions hivernales ou estivales, les valeurs mesurées doivent être parfaitement fiables pour donner une image réaliste des données d’échappement. Cependant, un fonctionnement à des pressions plus élevées peut permettre de réduire significativement les émissions polluantes. Les pressions élevées doivent ainsi être mesurables, et les technologies de détection doivent pouvoir fonctionner dans les applications mobiles sans défaillance.

Les solutions standard ne permettent pas de satisfaire ces objectifs de mesure et sont même à l’origine du problème. Les défis spécifiques exigent des solutions spécifiques. La précision et la flexibilité des instruments est également un facteur essentiel pour obtenir des mesures fiables dans différentes applications. Ce n’est qu’en suivant cette trajectoire que l’efficacité des coûts et la précision des mesures peuvent être conciliées. Dans ce contexte, il est clair que les systèmes modulaires sont la solution idéale. Ils peuvent être adaptés aux exigences individuelles des constructeurs et donner ainsi des résultats extrêmement fiables. Cela représente un avantage particulier dans le développement de nouveaux moteurs, car les adaptations peuvent être effectuées de manière directe et rapide.

Depuis près de 30 ans, nos clients bénéficient au quotidien de ces avantages de modularité. En tant que principal fabricant de systèmes de mesure modulaires spécifiques, nous pouvons fournir des solutions sur-mesure optimisées aux attentes et aux impératifs des constructeurs, dans des délais très courts. Du point de vue des mesures de pression, il n’existe aucun obstacle au développement de nouveaux moteurs économes en carburant et aux essais en conditions réelles.

Les mesures de pression aident à maintenir les batteries Li-ion à bonne température

Les mesures de pression aident à maintenir les batteries Li-ion à bonne température

Vous avez peut-être déjà vu des clips vidéo d’ordinateurs portables prenant feu sans raison apparente ou vous avez peut-être lu des articles concernant l’incendie de la Chevy Volt plusieurs semaines après un test de collision. Connus sous le nom d’« emballement thermique », ces occurrences des batteries au lithium-ion sont non seulement spectaculaires mais aussi extrêmement dangereuses.

L’emballement thermique, généralement causé par un courant excessif ou une température ambiante élevée, comprend plusieurs phases :

  • À partir de 80° C, la couche d’interphase à électrolyte solide (SEI) commence à se décomposer, ce qui produit une réaction entre l’électrolyte et l’anode. Cette réaction exothermique entraîne une rapide augmentation de la température.
  • La température élevée provoque la décomposition des solvants organiques, ce qui entraîne la libération de gaz (normalement à partir de 110° C). Au cours de cette phase, la pression à l’intérieur des cellules s’accumule et la température dépasse le point critique. Cependant, les gaz ne s’enflamment pas en raison d’un manque d’oxygène.
  • Enfin, à une température de 135° C, le séparateur se liquéfie et provoque un court-circuit entre l’anode et la cathode, entraînant la rupture de la cathode à oxyde métallique à 200° C et la libération d’oxygène permettant à l’électrolyte et à l’hydrogène de brûler. Cette réaction est également exothermique et entraîne une rapide augmentation de la température et de la pression.

    Les batteries à refroidissement liquide comme solution à l’emballement thermique

    Pour réguler la température des cellules Li-ion à haute énergie des véhicules électriques, les constructeurs utilisent des systèmes de gestion thermique sophistiqués, intégrant souvent des dissipateurs de chaleur refroidis par fluide, permettant de contrôler les températures hautes et les températures basses.

    Toutefois, la mise en œuvre d’un dissipateur thermique efficace pour une batterie de véhicule électrique ou hybride impose de déterminer le profil de température et de flux thermique de la batterie en testant et en enregistrant les valeurs à plusieurs endroits. Ces tests sont effectués à l’aide de thermocouples pendant les cycles de charge et de décharge de la batterie.

    Une fois ces données collectées et analysées, les courbes de tendance sont extrapolées en fonction des données des flux thermiques, puis utilisées pour créer des équations pour le profil de flux thermique pendant les phases de charge et de décharge.

    Après avoir déterminé le profil de flux thermique, une « moitié » de prototype de dissipateur thermique est créé à l’aide d’un logiciel de modélisation (tel que Creo Parametric 3D de PTC). Ce faisant, les canaux d’écoulement du fluide peuvent être définis pour créer les sections transversales des canaux de refroidissement le long des chemins critiques.

    Cependant, un transfert de chaleur efficace nécessite un équilibre précis entre le débit, la pression et la température du fluide circulant dans les canaux du dissipateur. Il est donc essentiel d’optimiser les pressions d’entrée et de sortie afin de contrôler le débit du fluide de refroidissement à travers le dissipateur thermique.


    Des mesures précises optimisent le transfert de chaleur

    Le différentiel de pression optimal pour un équilibrage thermique efficace est d’environ 0,008273709 bar. Par conséquent, les capteurs de pression utilisés pour mesurer les pressions du fluide dans les dissipateurs thermiques doivent offrir une excellente stabilité et une précison irréprochable , dans une large plage de températures et de pressions.

    Il n’existe que très peu de fabricants de capteurs de pression qui produisent des instruments capables d’exécuter cette tâche de manière fiable. Les fabricants qui fournissent des capteurs de pression aux équipes de développement du monde entier sont choisis en fonction des performances précises et cohérentes de leurs instruments de mesure.

    Les tests effectués avec ces capteurs de qualité servent à cartographier les pressions maximales et minimales à différents débits volumétriques, ce qui permet de comparer différentes conceptions de canaux d’écoulement.

    Comme défini dans l’équation de Bernoulli (où la vitesse au carré varie inversement à la pression), la chute de pression augmente de façon quadratique à mesure que le débit volumétrique augmente.

    Pour cette raison, les ingénieurs optent pour des canaux plus larges avec un débit faible et davantage de passages sur la batterie, optimisant ainsi le transfert de chaleur des cellules au dissipateur.

    Grâce à des mesures de pression précises pendant la phase de développement, la dissipation de la chaleur par convection forcée améliore considérablement la sécurité, la fiabilité et la cyclabilité des batteries Li-ion.

Améliorer la défense contre les anomalies climatiques grâce à des capteurs de niveau fiables

Améliorer la défense contre les anomalies climatiques grâce à des capteurs de niveau fiables

Depuis quelques années, la Russie est de plus en plus confrontée à des catastrophes environnementales causées par des conditions météorologiques extrêmes. Ces événements ont entraîné des dégâts matériels considérables et ont coûté de nombreuses vies humaines. Un vaste programme structurel visant à améliorer les prévisions météorologiques a été mis en place pour tenter de réduire ces risques et soutenir la recherche sur les changements climatiques.

Les anomalies météorologiques qui se produisent en Russie, telles que la sécheresse extrême de 2010 ou les fortes inondations de l’oblast de l’Amour en 2013, suscitent des préoccupations majeures en Russie et dans le reste du monde. Le Service fédéral russe d’hydrométéorologie et de surveillance de l’environnement (Roshydromet), qui est en charge de fournir des prévisions météorologiques de haute précision, va prochainement être renforcé dans le cadre du deuxième projet national de modernisation des services hydrométéorologiques. Un peu plus de 139 millions de dollars ont été investis dans ce projet.

Ce projet de modernisation à grande échelle aidera l’organe exécutif fédéral Roshydromet à fournir des informations fiables et actualisées sur les conditions météorologiques, l’hydrologie et le climat. Dans le même temps, la Russie devrait prochainement bénéficier d’une meilleure intégration au système mondial de services météorologiques.

Les mesures de ce projet incluent :

  • Le renforcement des technologies de l’information et de la communication nécessaires à l’acquisition de données météorologiques, climatiques et hydrologiques.
  • La modernisation du réseau d’observation.
  • La consolidation des institutions.
  • Un accès optimisé aux données et informations provenant du Roshydromet.
  • L’amélioration de la protection contre les catastrophes

Avec la modernisation du réseau d’observation hydrologique de Roshydromet dans les rivières Léna, Iana, Indigirka, Viliouï et Kolyma, une attention particulière a été accordée à la technologie de surveillance. Cette technologie, qui ne nécessite quasiment pas d’entretien, fonctionne de manière fiable dans les zones difficiles d’accès et dans les environnements extrêmes tels que le pergélisol.

Illustration 1 : Vue d’ensemble des sites de surveillance

En collaboration avec la société russe Poltraf CIS Co. Ltd., STS a fourni une partie des capteurs de niveau d’eau installés dans 40 stations de surveillance hydrologique. Le projet comportait les exigences suivantes:

  • La surveillance permanente des niveaux d’eau et des températures, ainsi que la mesure des précipitations et des chutes de neige. Cela inclut également l’installation de caméras de surveillance pour maintenir la formation de glace à des points stratégiques importants.
  • La transmission automatique et sans erreur de données via GPS ou satellite.
  • Une fonction d’alarme en cas de dépassement des limites définies.
  • Une solution de serveur pour stocker les données collectées, incluant un logiciel pour la visualisation, l’évaluation et le traitement des données.
  • Une technologie facile à installer et à utiliser qui permet un fonctionnement sans entretien majeur pendant plusieurs années.
  • Une préparation professionnelle des lieux de surveillance.

Pour répondre à ces impératifs particuliers plusieurs capteurs ont été employés, dont le capteur Modbus DTM.OCS.S/N/RS485. Cette sonde de niveau numérique mesure à la fois le niveau et la température. Sa conception robuste et sa résistance de -40 à 80 degrés Celsius lui permettent de résister aux conditions difficiles de cette application. Et sa précision de ≤ 0,03 % PE garantit des résultats précis aux points de mesure critiques.

Autres avantages de ce capteur de niveau numérique :

  • Capteur de niveau numérique de haute précision pour une intégration facile dans les réseaux Modbus standard.
  • Adaptation individuelle à diverses applications grâce à une conception modulaire.
  • Précision maximale sur toute la plage de températures grâce à une compensation électronique.
  • Réglage du décalage d’origine et de la plage de mesure via Modbus.
  • Stabilité à long terme de la cellule de mesure.
  •  Possibilité de recalibrer le capteur.
La fiabilité des mesures de pression à hautes températures

La fiabilité des mesures de pression à hautes températures

Dans certaines applications, les capteurs de pression sont exposés à des températures très élevées qui peuvent nuire à la fiabilité des mesures. Les autoclaves utilisés dans les industries chimiques et alimentaires pour stériliser le matériel et les fournitures constituent certainement l’une de ces applications exigeantes.

Les autoclaves sont des chambres de pression utilisées dans un large éventail d’industries pour diverses applications. Ils se caractérisent par des températures élevées et des pressions différentes de celle de l’air ambiant. Les autoclaves médicaux, par exemple, permettent de stériliser le matériel en détruisant les bactéries, les virus et les champignons à une température de 134 °C. L’air emprisonné dans la chambre de pression est retiré et remplacé par de la vapeur chaude. La méthode la plus courante s’appelle le déplacement vers le bas : la vapeur pénètre dans la chambre et remplit les zones supérieures en poussant l’air plus froid vers le bas. L’air est ensuite évacué par un drain équipé d’un capteur de température. Le processus se termine une fois que l’air est évacué et que la température a atteint 134 °C à l’intérieur de l’autoclave.

Des mesures précises à hautes températures

Dans les autoclaves, les capteurs de pression sont utilisés pour la surveillance et la validation des processus. Étant donné que les capteurs de pression standards sont généralement étalonnés à des températures ambiantes, ils ne peuvent théoriquement pas fournir des mesures fiables dans les conditions chaudes et humides des autoclaves. Cependant, STS a récemment été contacté par une entreprise de l’industrie pharmaceutique pour étudier l’implémentation d’un capteur capable d’offrir une précision de 0,1 % à une température de 134 °C, sur une plage de mesure de -1 bar à +5 bars.

Bien que les capteurs de pression piézorésistifs soient sensibles à la température, les erreurs de température peuvent être compensées afin d’optimiser les capteurs à différentes conditions. Sans cette optimisation, un capteur de pression standard offrant une précision de 0,1 % à température ambiante ne serait pas en mesure de garantir le même niveau de précision à 134 °C dans un autoclave.

Ainsi, les applications à températures élevées qui requièrent un capteur de pression très précis nécessitent un appareil calibré en conséquence. Mais la calibration d’un capteur de pression n’est qu’un des impératifs d’optimisation. L’entreprise qui nous a contactés pour l’implémentation d’un capteur en autoclave nous a soumis un autre défi : en plus du capteur de pression, tous les éléments de mesure (y compris l’électronique) doivent être positionnés à l’intérieur de l’autoclave et doivent pouvoir résister à des températures de 134 °C. Grâce à la grande modularité de nos dispositifs de mesure, nous sommes parvenus à assembler un appareil de mesure offrant la précision souhaitée de 0,1 % à 134 °C et dont l’ensemble des éléments peuvent résister aux conditions extrêmes d’un autoclave.

En résumé : Bien que les capteurs de pression piézorésistifs soient sensibles aux changements de température, avec le bon savoir-faire ils peuvent être optimisés pour répondre aux exigences d’applications spécifiques. Les capteurs peuvent être étalonnés en conséquence, et l’ensemble du dispositif de mesure peut être conçu pour résister aux environnements les plus extrêmes.

Abonnez-vous à notre newsletter

Abonnez-vous à notre liste de diffusion pour recevoir les dernière nouvelles et mises à jour de notre équipe.

Vous vous êtes enregistré avec succès!