Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
transmetteur de pression Archives - STS France
Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Les conséquences du phénomène d’auto-allumage dans les systèmes hydrauliques

Les conséquences du phénomène d’auto-allumage dans les systèmes hydrauliques

Comme son nom l’indique, le terme auto-allumage fait référence à un processus de combustion spontanée. Ce phénomène, caractéristique des moteurs Diesel, peut également être observé dans les systèmes hydrauliques. Les conséquences de l’auto-allumage incluent des pics de pression, un vieillissement prématuré de l’huile, des résidus de combustion et la destruction des joints d’étanchéité.

L’auto-allumage est le résultat des effets de la cavitation. Commençons par examiner les conditions de formation de la cavitation dans les systèmes hydrauliques.

La cavitation dans les systèmes hydrauliques

En fonction des gaz, des fluides, des températures et des pressions des systèmes hydrauliques, les huiles hydrauliques peuvent contenir de l’air dissous. La cavitation correspond à la naissance de bulles d’air dans l’huile hydraulique. Cela se produit lorsque l’huile est soumise à une certaine pression ou à des mouvements de cisaillement. En pratique, la cavitation se produit dans les conduites d’aspiration, les conduites de pompe, les rétrécissements de section, et dans les systèmes hydrauliques où des pulsations apparaissent. Lorsque la masse d’huile en mouvement subit un cisaillement, des vides se forment dans lesquels de fines bulles d’air sont libérées.

Le phénomène d’auto-allumage

Lorsque les bulles d’air résultant de la cavitation (qui contiennent également des particules d’huile) sont soumises à une pression élevée, une augmentation de température importante se produit dans les bulles. Cette élévation de température entraîne un phénomène d’auto-allumage (c.-à-d. une combustion dans le système hydraulique) qui se déroule en quelques millisecondes.

Les conséquences de la cavitation et de l’auto-allumage

La cavitation peut avoir diverses conséquences négatives : dégâts matériels des boitiers de pompe et des soupapes de surpression, aspiration des éléments d’étanchéité tels que les joints toriques, modification des caractéristiques de débit, réduction du fonctionnement des pompes et des engrenages en raison de pertes de remplissage, bruits, pics de pression supérieurs à la pression du système, etc. Le phénomène d’auto-allumage peut entrainer un vieillissement prématuré de l’huile, des résidus de combustion et la destruction des joints.

Les conséquences de la cavitation et de l’auto-allumage ne sont pas toujours immédiatement visibles. Elles sont souvent identifiées lorsqu’il est déjà trop tard et qu’il est nécessaire de réparer le système hydraulique. Les pics de pression dus à la cavitation et à l’auto-allumage peuvent également endommager les capteurs de pression installés dans le système. Une augmentation soudaine de la pression du système peut endommager et déloger la membrane du capteur de pression.

La précision des mesures de pression est un élément crucial du développement d’une pompe à huile électrique

La précision des mesures de pression est un élément crucial du développement d’une pompe à huile électrique

Sous l’impulsion de la hausse des objectifs mondiaux en matière d’émissions polluantes, les constructeurs se tournent de plus en plus vers les technologies d’électrification pour réduire la consommation de carburant et les émissions de gaz à effet de serre. L’une des solutions les plus populaires est le véhicule électrique hybride, souvent alimenté par un moteur à combustion dont la taille est fortement réduite.

Le problème de ces moteurs à taille réduite est que les systèmes auxiliaires gourmands en énergie nuisent gravement à la maniabilité et aux performances des véhicules. Heureusement, ces pertes parasites peuvent être considérablement réduites en remplaçant les composants mécaniques traditionnels par des unités à entraînement électrique. De ce fait, les pompes à moteur électrique remplacent progressivement les unités mécaniques dans les productions de série, en particulier les pompes à huile et les pompes à eau.

Image 1: Exemple de pompe à huile électrique
Source de l’image: Rheinmetall Automotive

Bien que les avantages de l’électrification soient évidents, en particulier pour les pompes à huile, il s’agit d’un processus techniquement complexe : les ingénieurs souhaitent non seulement faire circuler l’huile à un débit et à une pression spécifiques, mais ils souhaitent également les adapter intelligemment aux besoins du moteur.

Pour optimiser les performances, il est important que les pertes par frottement et par pompage soient minimisées grâce à un contrôle minutieux du débit d’huile dans les différents circuits, tout en garantissant une pression adéquate à tout moment.

Les simulations sont assujetties à la précision des mesures de pression et de débit d’huile effectuées sur banc d’essai

Une pompe à huile à alimentation électrique est composée de trois sous-systèmes : la pompe, le moteur et le contrôleur électronique. Par conséquent, le principal défi de tout nouveau développement d’applications est d’intégrer efficacement ces modules pour réduire leur taille, leur poids et le nombre de composants, tout en optimisant les performances.

La fonction principale d’une pompe à huile est de fournir un débit d’huile spécifique à une pression optimale. La conception d’une pompe à huile, qui est un processus itératif, commence par les «engrenages de pompage». Dans la plupart des applications, la pompe doit fournir des pressions supérieures à 1 ou 2 bars, allant souvent jusqu’à 10 bars.

Comme dans la plupart des développements de moteur, des simulations et des tests en conditions réelles sont utilisés pour accélérer la conception.

Le processus de conception commence par l’évaluation préliminaire de l’efficacité volumétrique, sur la base des résultats expérimentaux recueillis sur des pompes et des applications similaires. Ceux-ci incluent la vitesse de la pompe, la température de l’huile, la pression et le débit.

Il est important que les informations utilisées pour l’évaluation soient particulièrement précises. Par conséquent, la collecte des données doit être effectuée à l’aide d’un équipement de mesure extrêmement fiable et précis, capable de fournir des lectures exactes dans les conditions extrêmes rencontrées à l’intérieur et autour des moteurs.

Pour garantir la précision et la reproductibilité des mesures de pression, il est essentiel d’utiliser des capteurs de la meilleure qualité. Ces capteurs de pression doivent non seulement fournir des , mais ils doivent également résister aux vibrations.

Depuis de nombreuses années, STS développe des capteurs de pression qui répondent aux exigences spécifiques des constructeurs et des spécialistes de premier plan de conception et de développement de nouveaux moteurs.

Développer une pompe à huile électrique plus performante qu’une unité mécanique

L’avant-projet des engrenages de pompage est finalisé en fonction des informations recueillies sur les exigences hydrauliques à différents débits, les pressions de refoulement et les températures de l’huile. Grâce au logiciel Simulink de Matlab, les informations relatives au comportement du système physique peuvent être rationalisées sous forme de code unidimensionnel.

À ce stade, il est important de noter que pour générer le débit requis à une pression spécifiée, il convient de choisir une vitesse de rotation qui permet une disposition optimale du moteur et de la pompe sans créer de problèmes de cavitation ou de bruit. Ainsi, la plage de vitesse typique pour un fonctionnement en continu se situe généralement entre 1 500 et 3 500 tours par minute.

À l’étape suivante, plusieurs conceptions peuvent être générées à l’aide du logiciel Simcenter Amesim qui permet d’optimiser les paramètres de conception. Par exemple, le nombre de dents et l’excentricité, tout en satisfaisant aux conditions limites de pression, de débit et de température.

Après avoir mis en œuvre les caractéristiques géométriques des éléments hydrauliques et après avoir finalisé la conception intermédiaire, le couple total nécessaire pour entraîner la pompe aux points de fonctionnement critiques peut être calculé comme suit :

Mtot = MH + MCL + Mμ

  • MH est le couple hydraulique obtenu par une pression et un débit adaptés.
  • MCL est la contribution coulombienne générée lors de contacts secs ou lubrifiés entre les pièces coulissantes.
  • Mμ est la contribution visqueuse obtenue par le mouvement du fluide entre les pièces.

Une fois la conception terminée, des prototypes d’ingénierie sont construits pour une évaluation en situation réelle sur un banc d’essai de moteur.

Une fois encore, la pression d’huile, le débit et la température sont mesurés à différents régimes moteur et à différents régimes de pompe, afin de valider les résultats obtenus par simulation. Si les résultats sont conformes aux spécifications, le programme de développement est finalisé et le projet entre dans la phase d’industrialisation.

Pour des performances et une durabilité optimales, il est évident que toutes les mesures doivent être enregistrées avec précision. Cependant, les informations générées par le capteur de pression ont une importance et une incidence supérieure aux autres mesures: une pression insuffisante peut conduire à une défaillance catastrophique, tandis qu’une pression excessive gaspille de l’énergie et peut entraîner des problèmes avec les joints d’étanchéité.

La pression libère le potentiel du gaz naturel comprimé

La pression libère le potentiel du gaz naturel comprimé

Grâce à sa très haute densité énergétique, le gaz naturel comprimé (GNC) est idéal comme carburant automobile. Le GNC a un indice d’octane d’environ 120 et une chaleur de combustion de 9 000 à 11 000 kcal/kg ou 38 à 47 MJ/kg.

De plus, la combustion du GNC produit beaucoup moins d’émissions de CO2 que la combustion d’essence, par exemple. Et comme le GNC est un carburant particulièrement économique dans de nombreux pays, les constructeurs manifestent un intérêt croissant pour le développement de véhicules capables de fonctionner avec ce type de carburant alternatif.

Le principal défi lié à l’optimisation d’un moteur à combustion interne fonctionnant au GNC consiste à réguler la pression d’injection dans la rampe d’alimentation.

Illustration 1: Exemple d’un système hybride fonctionnant à l’essence et au GNC
Source de l’image: Bosch Mobility Solutions

 

Le GNC, stocké à environ 200 bars, est généralement injecté entre 2 et 9 bars en fonction des besoins du moteur : une pression basse pour une conduite économe en carburant dans les plages de vitesses basses, et une pression plus élevée lorsque davantage de puissance et de couple sont requis.

L’efficacité de la combustion dans le cylindre d’un moteur dépend fortement de la température et de la pression du GNC : une augmentation de la pression à volume constant se traduira par une densité massique plus élevée du gaz, augmentant ainsi son pouvoir calorifique.

Bien que la température initiale et la pression d’injection puissent être modifiées, des pertes de puissance et une faible manœuvrabilité peuvent survenir si ces éléments ne sont pas calibrés avec précision au cours du développement.

Injecter du GNC sous pression

Généralement, le GNC est alimenté depuis un réservoir haute pression vers la rampe d’alimentation via un régulateur de pression. Pour une combustion efficace du carburant, la quantité de gaz naturel injectée doit toujours correspondre à la masse d’air requise par le moteur. Pour cela, la gestion électronique du moteur utilise généralement un débitmètre pour déterminer la quantité exacte d’air nécessaire, puis la quantité de GNC à injecter.

Dans les moteurs à injection directe, le GNC est alimenté vers le collecteur d’admission par un distributeur de gaz naturel. Un capteur de pression mesure la pression et la température dans le distributeur de gaz naturel, permettant ainsi aux injecteurs de gaz naturel de fournir la quantité précise de carburant requise.

Alternativement, l’injection peut également être mise en œuvre sans distributeur de gaz naturel, en alignant chaque injecteur avec un cylindre correspondant. Avec ce principe d’injection multipoint, le gaz est injecté sous pression à chaque collecteur d’admission de cylindre, en amont de la soupape d’admission.

Étant donné que les variations de pression ont une influence importante sur les performances d’un moteur qui fonctionne au GNC, le couple du moteur et les émissions de gaz d’échappement (CO, CO2, NOx et hydrocarbures) doivent être enregistrés lors des essais du moteur.

Optimiser la pression du rail dans toutes les conditions de conduite

Pour optimiser un système au GNC, il est important que la pression à l’intérieur du rail soit mesurée avec précision à diverses ouvertures du papillon des gaz pendant les phases de conception et d’essais, et qu’elle soit comparée au couple du moteur et aux émissions de gaz d’échappement correspondantes. Par conséquent, la plupart des ingénieurs en développement ont besoin de capteurs de pression de haute qualité.

Il est important que ces capteurs fournissent des lectures précises sur une large plage de pressions, tout en conservant leur intégrité à des températures élevées.

Bien qu’une augmentation de la pression du GNC réduise les émissions de CO2, de HC et de NOx, elle a également pour effet d’augmenter le CO des gaz d’échappement. Il est donc indispensable d’enregistrer avec précision les effets de la modulation de la pression d’injection de GNC.

Pendant les tests, un régulateur de pression est utilisé pour contrôler la pression d’injection mesurée par un capteur de pression situé dans le rail. Et un débitmètre analogique, en général d’une capacité de 2,5 m3/h, est utilisé pour mesurer et contrôler le débit d’air entrant. Enfin, un dynamomètre de châssis est utilisé pour enregistrer le couple moteur.

Tout au long des tests, la température et le débit du gaz sont maintenus à des valeurs constantes, respectivement de 22 °C et de 0,1 SCFH. Un ventilateur de forte puissance est utilisé pour maintenir la température du moteur pendant les tests, et un équipement de contrôle des émissions est fixé à la sortie d’échappement pour enregistrer la teneur en CO, CO2, hydrocarbures et NOx des gaz d’échappement.

Le processus est assez complexe et exige que la pression, le couple et les émissions du rail soient mesurés à des centaines de points d’ouverture du papillon des gaz afin de créer une cartographie efficace des besoins du moteur.

Mesurer, enregistrer et saisir toutes ces données dans des tableaux appropriés prend beaucoup de temps. Par conséquent, les ingénieurs de développement se tournent souvent vers des outils de modélisation pour accélérer le développement. Ces outils fournissent généralement un environnement de simulation et de conception permettant de développer des systèmes dynamiques et intégrés, réduisant ainsi le nombre de versions matérielles requises pour concevoir le système.

Le modèle de simulation est codé avec les informations obtenues lors des tests en temps réel, puis intégré dans un exécutable utilisant un compilateur C afin de l’exécuter sur un système d’exploitation en temps réel.

Une fois les données de base capturées, il est possible de générer un nombre infini de simulations en temps réel qui sont applicables à n’importe quel aspect du cycle de conception – du concept initial à la conception du contrôleur, en passant par les essais et la validation à l’aide de tests HIL (Hardware-in-the-loop).

Un programme d’essai utilisant des équipements et des capteurs de pression professionnels, permet aux véhicules fonctionnant au GNC d’atteindre des performances et une manœuvrabilité comparables aux véhicules fonctionnant aux combustibles fossiles, tout en réduisant les coûts et les émissions

Les diagraphies de forages nécessitent des capteurs de pression robustes et performants

Les diagraphies de forages nécessitent des capteurs de pression robustes et performants

Le terme «diagraphie de forage» (ou mud logging en anglais) fait référence aux méthodes analytiques appliquées à la boue de forage lors des opérations de forage. Lors de ce processus, l’usage de capteurs de pression puissants et robustes est essentiel.

Bien que le terme «diagraphie de forage» soit relativement explicite, il offre une description incomplète du processus: les techniciens de surveillance de forages (ou mud logger en anglais) sont chargés de la collecte et de l’étude d’échantillons de forage. Ils analysent en temps réel les données provenant du processus de forage. C’est la raison pour laquelle ce type de diagraphie est aussi appelé «diagraphie instantanée». La boue de forage est le composant le plus important d’une diagraphie car elle transporte les informations de forage depuis le fond du trou jusqu’à la surface, où les déblais (c.-à-d. les morceaux de formations rocheuses) contenus dans le fluide de forage sont examinés.

Ces analyses fournissent un protocole de profondeur permettant de déterminer la profondeur des hydrocarbures, d’identifier la lithologie de forage et de surveiller les gaz naturels susceptibles de pénétrer dans la boue de forage. Les diagraphies de forages servent également à estimer la pression interstitielle ainsi que la porosité et la perméabilité de la formation forée. Elles permettent aussi de collecter, de surveiller et d’évaluer les hydrocarbures, d’évaluer la productibilité des formations contenant des hydrocarbures et de conserver un enregistrement des paramètres de forage. Ces données sont essentielles pour garantir des opérations de forage sûres et rentables.

Les diagraphies instantanées sont effectuées en temps réel dans des laboratoires mobiles installés sur le site de forage. Les données en temps réel sont directement utilisées pour le contrôle du forage. Les diagraphies de forages sont généralement effectuées par des spécialistes engagés par la société de forage. STS fournit des capteurs de pression à plusieurs prestataires de services de diagraphies de forages.

La caractéristique essentielle des capteurs de pression utilisés dans les processus de forage: durabilité

Pour surveiller le processus de forage, les techniciens de surveillance de forages montent divers capteurs sur l’appareil de forage. La détection de pertes, même mineures, de la pression des tiges de forage nécessite un très haut degré de précision. Des temps de réponse immédiats sont également nécessaires pour éviter tous problèmes de repêchage et pour minimiser les risques et les coûts associés à d’éventuelles anomalies.

Les sites de forage sont des environnements difficiles qui peuvent être très exigeants pour les capteurs de pression. Les deux facteurs les plus importants à cet égard sont la boue et les vibrations des opérations de forage.

Image 1: Capteur de pression certifié ATEX pour des applications de diagraphie

Pour faire face à ces conditions difficiles, STS fournit aux prestataires de services de diagraphies des capteurs ATM/ECO/EX équipés de boitiers personnalisés. Les capteurs de pression certifiés ATEX sont optimisés pour des plages de haute pression. Les vibrations générées lors des processus de forage affectent principalement la zone située entre le tube et le raccord de pression. Pour résoudre ce problème, STS utilise une double soudure sur le raccord et un tube en acier inoxydable plus épais (26,5 mm). Outre les plages de haute pression et les vibrations, une autre difficulté est à prendre en considération : la boue peut obstruer le canal de pression. Pour éviter tout problème d’obstruction, nous avons élargi le canal de pression à 10 mm. Étant donné que les techniciens de surveillance de forages travaillent principalement avec des pressions statiques, l’augmentation du canal de pression n’engendre aucun risque de détérioration de la membrane de pression.

La fragilisation de l’acier par l’hydrogène

La fragilisation de l’acier par l’hydrogène

La cellule de mesure des capteurs de pression piézorésistifs est généralement entourée d’une membrane en acier. Dans la plupart des applications, les boîtiers de ces instruments de mesure sont également composés d’acier inoxydable. Mais si ce matériau entre en contact avec de l’hydrogène, il peut être fragilisé et se fissurer.

La fragilisation par l’hydrogène affecte l’acier, et également tous les autres métaux. C’est pourquoi l’usage du titane n’est pas plus adapté aux applications qui utilisent de l’hydrogène.

Qu’est-ce qu’on entend par fragilisation par l’hydrogène ?

Le phénomène de fragilisation par l’hydrogène fait référence à la perte de ductilité d’un matériau. La ductilité désigne la capacité d’un matériau à se déformer plastiquement sans se rompre. L’acier, selon sa composition en éléments d’alliage, peut se déformer de plus de 25 %. Les matériaux qui ne possèdent pas cette capacité sont qualifiés de « fragiles ».

Mais les matériaux ductiles peuvent également devenir fragiles ou cassants. Lorsque cette fragilisation du matériau résulte de l’absorption d’hydrogène, on parle alors de fragilisation par l’hydrogène.

La fragilisation par l’hydrogène survient lorsque l’hydrogène atomique se diffuse dans le matériau. La fragilisation par l’hydrogène est généralement issue d’une corrosion par l’hydrogène.

La corrosion par l’hydrogène, également appelée corrosion aqueuse, se produit lorsqu’un métal est en contact avec de l’eau dans un environnement à faible niveau d’oxygène. Cette réaction d’oxydo-réduction produit de l’hydrogène pur, qui a pour effet d’oxyder le métal. Le métal se dissout sous forme de solution aqueuse composée d’ions, qui provoque une dégradation uniforme du matériau.

L’hydrogène libéré par cette réaction d’oxydo-réduction se diffuse dans l’acier en raison de sa petite taille atomique (seulement 0,1 nanomètre). L’hydrogène s’insère directement dans le treillis métallique du matériau au niveau atomique. Les imperfections qui se forment ainsi dans le treillis augmentent la capacité d’absorption et donc accélèrent la corrosion. Cela provoque une fatigue chimique du matériau, ce qui peut provoquer des fissures de l’intérieur vers l’extérieur, même à faibles charges.

L’hydrogène et les capteurs de pression

En raison de sa très petite taille atomique, l’hydrogène peut pénétrer dans l’intégralité du matériau et provoquer divers effets néfastes. Les membranes métalliques des capteurs de pression piézorésistifs sont particulièrement fines (plus elles sont fines, plus le capteur est sensible et précis). Si de l’hydrogène se diffuse à travers la membrane d’un capteur (phénomène de perméation), la réaction avec le fluide de transfert entourant la cellule du capteur peut entrainer une adsorption d’hydrogène et altérer les propriétés métrologiques du pont de mesure. Parallèlement, ces dépôts peuvent également entraîner une augmentation de la pression et causer une déformation de la membrane du capteur, voire la destruction complète de la membrane.

Outre l’utilisation d’une membrane plus épaisse (mais moins précise), ce processus peut être considérablement retardé en utilisant un alliage d’or. La durée de vie de l’unité est ainsi grandement optimisée. Consultez cet article pour en apprendre davantage.

Abonnez-vous à notre newsletter

Abonnez-vous à notre liste de diffusion pour recevoir les dernière nouvelles et mises à jour de notre équipe.

Vous vous êtes enregistré avec succès!