Migliore protezione contro le anomalie climatiche grazie a sonde di livello affidabili

Migliore protezione contro le anomalie climatiche grazie a sonde di livello affidabili

Negli ultimi anni la Russia ha dovuto lottare sempre di più con le catastrofi ambientali a causa delle condizioni metereologiche estreme. Non solo ci sono stati enormi danni materiali, ma ha anche perdite di vite umane. Un vasto programma strutturale per prevedere meglio il tempo serve a limitare i rischi e sostenere la ricerca sui cambiamenti climatici.

Le anomalie climatiche, come la lunga siccità del 2010 o le forti inondazioni nella regione dell’Amurdel 2013, hanno suscitato grande attenzione e preoccupazione in Russia e non solo. In Russia, il Servizio federale di idrometeorologia e monitoraggio ambientale (Roshydromet) è responsabile per le previsioni meteo di elevata precisione e sarà ulteriormente rafforzato nell’ambito dell’Hydrometeorological Services Modernization Project-II. A tale scopo ci sarà un investimento di poco più di 139 milioni di dollari.

Questo progetto su larga scala di ammodernamento supporta il Roshydromet nel suo compito di fornire alla popolazione russa e alle amministrazioni locali informazioni affidabili e tempestive sulle condizioni meteo, idrologiche e climatiche. Allo stesso tempo, la Russia deve essere integrata meglio nel sistema globale dei servizi meteorologici. 

Le varie misure del progetto includono : 

  • il rafforzamento delle tecnologie di informazione e comunicazione per la fornitura di dati sul meteo, sul clima e sull’idrologia;
  • l’ammodernamento della rete di osservazione;
  • il rafforzamento delle istituzioni;
  • un accesso ottimizzato ai dati e alle informazioni del Roshydromet;
  • il miglioramento delle misure anti-catastrofe.

Per modernizzare la rete di osservazione idrologica del Roshydromet nei fiumi Lena, Jana, Indigirka, Viljuje Kolymaè stata posta particolare attenzione alla tecnologia di monitoraggio che funziona in modo affidabile e quasi completamente senza bisogno di manutenzione in aree difficili da raggiungere e in condizioni rigide come il permafrost.

Immagine 1: Panoramica dei punti di misurazione

Una parte dei sensori di misura necessari sono stati forniti dalla STS e, in collaborazione con l’azienda partner russa Poltraf CIS Co. Ltd., sono stati installati in 40 stazioni di misura idrologica. Il progetto includeva i seguenti requisiti: 

  • il monitoraggio permanente del livello e della temperatura dell’acqua, nonché la misura della pioggia e della neve. Ciò comprende anche l’installazione di telecamere di sorveglianza per tenere sotto controllo la formazione di ghiaccio in importanti punti strategici.
  • la trasmissione automatica e priva di errori dei dati via GPS o satellite.
  • una funzione di allarme in caso di superamento dei valori limite definiti.
  • una soluzione server per memorizzare i dati raccolti con un software di visualizzazione, valutazione ed elaborazione dati.
  • una tecnologia semplice da installare e utilizzare, che funzioni negli anni senza richiedere una grande manutenzione.
  • una preparazione professionale dei siti di misurazione.

Per soddisfare questo difficile compito è stato utilizzato, insieme ad altri, il sensore Modbus DTM.OCS.S/N/RS485. Le sonde di livello digitali misurano sia il livello che la temperatura. Grazie al design robusto e alle temperature ambientali consentite da -40 a 80 °C è possibile far fronte alle rigide condizioni, mentre l’accuratezza di ≤ 0.03 % FS assicura risultati precisi nei punti di misura critici. 

Altri vantaggi della sonda di livello in sintesi: 

  • sensore di livello digitale ad alta precisione per una facile integrazione nella rete Modbus standard.
  • adattamento personalizzato all’applicazione grazie alla costruzione modulare.
  • massima precisione per l’intero campo di temperatura grazie alla compensazione elettronica.
  • regolazionedell’offset del punto zero e dell’intervallo di misura tramite il Modbus.
  • elevata stabilità a lungo termine della cella di misura.
  • sensore ricalibrabile
Misurazione della conducibilità in acque naturali e altri liquidi

Misurazione della conducibilità in acque naturali e altri liquidi

Quando si misura la conducibilità bisogna considerare alcune cose a seconda del liquido da esaminare. Particolare attenzione è data alla temperatura essendo il maggiore fattore determinante.

La conducibilità come grandezza si esprime in microsiemens e indica la capacità di una sostanza di condurre la corrente elettrica. La conduttanza è il reciproco della resistenza, che viene espressa in ohm. Di conseguenza, maggiore è la conduttanza, minore è la resistenza.

L’acqua pura è praticamente un non conduttore (0,055 µS/cm rispetto a 500 µS/cm dell’acqua potabile). Diventa conduttiva solo tramite sostanze disciolte al suo interno come i cloruri, i solfati e altre sostanze. Attraverso la misurazione della conducibilità è pertanto possibile determinare la purezza di un’acqua: più la conducibilità è maggiore, più ci sono sostanze disciolte nell’acqua. I tipici casi di applicazione della misurazione della conducibilità sono, ad esempio, le discariche con lo scopo di verificare l’inquinamento delle acque sotterranee. Il monitoraggio della presenza di acqua salata nelle fonti di acque sotterranee è un’altra tipica applicazione. Ciò fa della conducibilità un importante fattore per le attività di controllo nelle tecnologie ambientali al fine di trarre conclusioni sulle possibili impurità. Tuttavia, la conducibilità è solo un indicatore di inquinamento. La composizione delle sostanze presenti nell’acqua deve essere poi analizzata chimicamente. Inoltre, non tutte le sostanze che possono essere disciolte in acqua sono conduttive (ad esempio gli ormoni o i fungicidi).

Un’altra comune applicazione è il rilevamento della direzione di flusso, nonché della sua velocità. A questo scopo si aggiunge del sale all’acqua, aumentandone così la conducibilità. Attraverso misurazioni puntuali della conduttanza è possibile determinare con precisione la velocità e la direzione del flusso.

Come già accennato, la conducibilità di una sostanza dipende fortemente dalla temperatura. A temperature diverse, quindi, due campioni di una stessa sostanza possono dare valori di conducibilità diversi. Senza una compensazione della temperatura non c’è praticamente possibilità di comparare due sostanze, se queste non sono o non possono essere esaminate esattamente alla stessa temperatura. Per questo motivo, la misurazione della conducibilità e il rilevamento della temperatura sono strettamente collegati. Solitamente, infatti, durante una misurazione della conducibilità si misurano sia la conduttanza che la temperatura. Mediante la compensazione della temperatura la conduttanza viene calcolata su una temperatura di riferimento, quasi sempre di 25 °C.

Funzione di compensazione della temperatura: la sostanza è decisiva

Quale funzione di compensazione della temperatura viene utilizzata per rilevare la conducibilità alla temperatura di riferimento dipende interamente dal liquido da esaminare. Per le acque naturali si utilizza la funzione non lineare secondo la norma DIN EN 27888 sulla qualità dell’acqua.

Per soluzioni saline, acidi e alcali si utilizzano funzioni lineari. Per poter calcolare la variazione percentuale della conducibilità K per °C sulla variazione di temperatura ∆T si utilizza la seguente formula:

α = (∆K(T)/∆T)/K(25°C)*100

∆K(T) = variazione della conducibilità nell’intervallo di temperatura selezionato

∆T = variazione della temperatura nell’intervallo di temperatura selezionato

K(25°C) = conducibilità a 25°C

Infine, esaminiamo un esempio di calcolo per determinare la conducibilità di un anticalcare rapido: per ottenere i dati necessari al calcolo vengono effettuate tre misurazioni:

 

122.37 mS/cm a 20°C

133.10 mS/cm a 25°C

135.20 mS/cm a 26°C

∆K(T) = 135.20 mS/cm -122.37 mS/cm = 12.83 mS/cm

∆T = 26°C – 20°C = 6°C
K(25°C) = 133.10 mS/cm

α = ((135.20 – 122.37)/(26 – 20))/133.10*100 = 1.60 %/°C