Misurazione della pressione su base piezoresistiva

Misurazione della pressione su base piezoresistiva

La misurazione della pressione su base piezoresistiva è ideale per  misurare la pressione statica e offre vantaggi anche in termini di accuratezza e miniaturizzazione. In uno speciale white paper mostriamo le modalità di funzionamento della misura della pressione piezoresistiva.

Attraverso la misurazione della pressione piezoresistiva si misura la variazione di resistenza elettrica di un materiale. La variazione di resistenza dovuta alla compressione e alla trazione avviene essenzialmente in ogni materiale, ma, a differenza dei metalli, nei materiali semiconduttori è particolarmente pronunciata. Per questo motivo la misura viene applicata in particolar modo agli estensimetri realizzati con materiali semiconduttori come il silicio. In questo caso, a differenza degli estensimetri metallici, la sensibilità è più elevata ed è possibile realizzare fattori di proporzionalità positivi e negativi. La soluzione ottenuta è dunque molto più efficace con l’utilizzo del silicio piuttosto che con i metalli. 

Scopri tutto sulla misura della pressione su base piezoresistiva in un white paper gratuito ad hoc. Scoprirai tra l’altro: 

  • le differenze tra gli estensimetri in metallo e gli estensimetri a semiconduttore
  • informazioni sulla produzione dei semiconduttori (crescita del monocristallo di silicio)
  • il comportamento termico delle proprietà dei semiconduttori
  • il meccanismo d’azione dell’effetto piezoresistivo
  • la struttura della cella di misura piezoresistiva 
Sensori di pressione come dispositivi di collaudo – misurazione della pressione nel vano motore degli aerei

Sensori di pressione come dispositivi di collaudo – misurazione della pressione nel vano motore degli aerei

Come molti ingegneri hanno scoperto con loro dispiacere, avere a che fare con la misurazione della pressione nel vano motore di un aereo può essere un’esperienza delicata e frustrante. Entrano in gioco il caldo, le vibrazioni, l’orientamento e una moltitudine di altri fattori. Allora come è possibile sperare di sviluppare un metodo per ottenere letture consistenti e accurate? Beh, naturalmente ci vogliono ancora ore, giorni e molto più probabilmente mesi di test! Tuttavia, abbiamo pur sempre bisogno di un sensore di prova che possa essere all’altezza della situazione, funzionare per tutte queste condizioni variabili e produrre in modo continuativo risultati corretti e ripetibili. Dopo tutto siamo ingegneri e i risultati ripetibili sono una necessità del nostro lavoro. Fortunatamente per noi, la STS si è fatta avanti e ha realizzato una serie completa di sensori di pressione per soddisfare tutte le nostre esigenze di test. Dove queste esigenze possono variare da specifici requisiti di temperatura, vincoli di dimensione, materiali di tenuta e segnali di uscita elettrici. Tutti questi requisiti verranno coperti nell’articolo che segue dedicato all’utilizzo di trasmettitori di pressione della STS per le nostre esigenze di test.

Continuiamo con il nostro esempio sul vano motore e concentriamoci sulla pressione dell’olio. Una delle prime preoccupazioni quando si sceglie un sensore di pressione per questo test è la resistenza alla temperatura. Ovviamente c’è molto calore vicino ad un motore di un aereo, per cui dobbiamo chiederci: può il sensore essere installato da solo o ha bisogno di una protezione contro il calore? Ma ancora più importante, il sensore funzionerà correttamente quando i suoi componenti inizieranno a surriscaldarsi? Letture inconsistenti della pressione dell’olio sono l’ultimo dei desideri di un pilota! Si tratta quindi entrambe di valide domande, ma non preoccupatevi troppo. La linea di sensori di pressione della STS comprende un’eccellente resistenza alla temperatura, fino a 125° C. Questo, nella maggior parte dei casi, scioglie le nostre perplessità iniziali e permette di installare il sensore nel vano motore nella posizione più logica senza doversi preoccupare dell’interazione della temperatura. Inoltre, possiamo occuparci della posizione del sensore di prova e fare vari tentativi perfezionandola senza dover stare costantemente sull’attenti per capire se l’aumento della temperatura manipolerà i nostri risultati. Cosa che ci dà un bel po’ di flessibilità nell’ideare il nostro piano di prova.

Insieme alla posizione di montaggio, anche le dimensioni del sensore sono cruciali. Cercare di incastrare una rozza scatola vicino a un bel motore per effettuare una serie di test sulla pressione dell’olio farebbe senza dubbio sollevare qualche sopracciglio tra i presenti. Per di più, lo spazio in questa area è sempre esiguo. Ad ogni modo, è una questione che non si pone visto che la STS ha realizzato un sensore di pressione molto compatto e dal basso profilo che rende l’installazione comoda in tutta l’area coinvolta dalle operazioni. Grazie alle avanzate opzioni di personalizzazione di cui parleremo dopo, le dimensioni esatte variano da sensore a sensore. Tendono comunque a rientrare in un range di 50-60 mm. Tali dimensioni così contenute, permettono un serraggio facile utilizzando delle semplici fascette ammortizzate o qualsiasi altra squadretta senza dover impiegare il tempo a realizzare uno schema di montaggio comune o senza cercare di inventarsi un nuovo metodo di serraggio ultra complicato ogni volta che il sensore deve essere riposizionato per trovare la posizione ottimale per le letture della pressione dell’olio. Tutto considerato, è certamente un risparmio di tempo mentre noi siamo concentrati su una serie di test puntuali ed efficaci.

L’ultimo fattore che menzioneremo e che può essere preziosissimo per i test sulla pressione è la personalizzazione. Il più delle volte, i sensori di pressione facilmente disponibili sul mercato per eseguire questo genere di test hanno un ambito ben definito di funzionamento. Un’unica configurazione che funziona al meglio in “questo” range di pressione, per “questa” frequenza di raccolta, e il sensore è presente solo in “questo” design. Invece i sensori di pressione della STS offrono diverse opzioni e personalizzazioni che ci danno la libertà di non limitare il nostro test sulla base delle capacità individuali del sensore utilizzato.

Per il nostro esempio, dobbiamo naturalmente disporre di un materiale di tenuta che non contamini gli oli, né che si degradi con un’esposizione costante. Ebbene abbiamo diverse opzioni per le guarnizioni dei sensori in grado di fare proprio questo, inclusi EPDM e Viton per essere sicuri che il sensore operi al massimo delle prestazioni per l’intero svolgimento del test. O, diversamente, possiamo optare per una guarnizione metallica per assicurarci risulti corretti. Non solo, forse abbiamo bisogno di una connessione a membrana frontale, con un cavo in PUR, oltre che a un segnale di uscita di 4-20 mA. La STS è in grado di fornire esattamente tutto questo, insieme a qualsiasi numero di altre combinazioni per garantire che la connessione al processo, i segnali elettrici e di uscita, la presa di pressione e le guarnizioni siano esattamente quello di cui abbiamo bisogno. In sostanza, il sensore è scelto apposta per il nostro test e noi dobbiamo semplicemente far incastrare alcuni componenti nella pianificazione del test.

Per ricapitolare, ci è stato richiesto di progettare una serie di test sulla pressione dell’olio; e, come per la maggior parte dei test, molti dei fattori saranno manipolati. Il calore, il metodo di installazione, l’intervallo della pressione e un numero noiosamente grande di altri elementi cambieranno costantemente durante il corso del test. Per dirla tutta, abbiamo bisogno di un trasmettitore di pressione di prova che possa fare al caso nostro e produca risultati accurati in modo consistente. Ebbene, possiamo almeno stroncare subito questo problema sul nascere inserendo un sensore di pressione STS nel nostro regime di test. Gli intervalli di alte temperature e di pressione, in combinazione con le guarnizioni su misura, le connessioni al processo, i segnali elettrici e di uscita, e il design complessivo garantiscono che sia un sensore che può essere preconfigurato per calzare perfettamente nel proprio apparato di prove e non richiede che sia il tuo intero sistema ad essere riconfigurato per adattarsi al sensore.

Come selezionare un sensore di pressione: una guida pratica per gli ingegneri aerospaziali

Come selezionare un sensore di pressione: una guida pratica per gli ingegneri aerospaziali

Progettare e realizzare un aereo è un compito arduo e un’impresa non da poco senza i giusti mezzi. Calcoli infiniti, progettazioni, simulazioni e riprogettazioni sembrano essere un processo senza fine; eppure, alla fine, si arrivererà alla tappa fondamentale dei test intensivi! Si tratta di un processo molto emozionante: tutti i pezzi in 3D da te disegnati, i sistemi assemblati e tutti i componenti sono ora proprio davanti a noi. È il momento di dimostrare che ogni cosa funzionerà alla perfezione, ma bisogna non correre troppo! Per farlo abbiamo bisogno di strumenti di registrazione dei dati di alto livello per poter verificare le prestazioni del nostro sistema. E c’è di più: abbiamo bisogno di sensori di prova che possano funzionare nelle condizioni più estreme, sia all’interno che all’esterno del velivolo. Ebbene, questo è il motivo per cui la STS entra in gioco: fornisce trasmettitori di misura della pressione affidabili per garantire che le nostre serie di test sulla pressione si svolgano senza intoppi, esattamente come il sistema da noi progettato. Nel resto dell’articolo presenteremo una guida passo per passo per informare in modo esaustivo della gamma completa di opzioni che la STS offre e su come integrare questi dispositivi nel proprio sistema.

Precisione

Come primo passo abbiamo bisogno di esaminare con attenzione il sistema aereo che stiamo collaudando e stabilire la precisione richiesta per la nostra raccolta dati. Ad esempio, il sistema idraulico che controlla i freni di un aereo spesso funziona entro uno specifico range di pressione e tale range è abbastanza ampio da non richiedere una precisione straordinaria quando si sceglie un sensore di prova. Quindi l’opzione della STS di ± 0.25% FS sarebbe una soluzione adeguata. D’altra parte, la pressione dell’olio, paragonata all’impianto idraulico dei freni, deve essere monitorata in maniera molto più scrupolosa. Alla luce di questo, possiamo scegliere l’opzione della STS di un trasmettitore di pressione ad alta precisione che ha il maggior livello di precisione possibile, vale a dire ± 0.05% FS, per garantire che la pressione dell’olio resti al suo livello massimo in tutto il sistema motore.

Temperatura

Ora che abbiamo stabilito la precisione richiesta in base al nostro impiego, passiamo all’integrazione del sensore di pressione nel nostro sistema aereo di prova. Naturalmente, i sistemi a pressione orientata in un aereo differiscono enormemente tra loro in termini di dimensioni, temperatura di funzionamento e mezzo di pressione; di conseguenza, abbiamo la libertà di scegliere appositamente ognuna di queste caratteristiche per il nostro sensore.

Nel prossimo passo del processo di selezione, volgiamo la nostra attenzione alla temperatura di funzionamento. In un velivolo, il sensore di pressione di prova potenzialmente potrebbe registrare dati all’interno degli spazi soffocanti del vano motore. Al contrario, potrebbe essere posizionato all’esterno misurando la pressione Pitot o magari la pressione del fluido anti-ghiaccio, e in tal caso la temperatura di funzionamento sarà drasticamente inferiore a quella nel vano motore. Niente paura, la STS offre una vastissima gamma di temperature di funzionamento da -25 a 125 ° C. Questa gamma di base coprirà in linea di massima la maggior parte dei nostri bisogni legati alla pressione aerospaziale. Ancora più accattivante è il fatto che tutti i sensori STS sono realizzati per includere un campo di temperatura compensato, vale a dire che l’errore di misura intrinseco è drasticamente inferiore ai limiti specificati prima. Si tratta di una caratteristica particolarmente utile al momento di terminarei test intensivi sui nostri sistemi di pressione!

Il range di temperatura sopramenzionato non è affatto definitivo. In caso di necessità, si può optare per un sensore dotato di alette di raffreddamento per spingere la temperatura massima a 150 ° C.Tale esigenza potrebbe sorgere se il sensore dove essere situato vicino al sistema di scarico del motore, che può irradiare una quantità di calore notevole. Inoltre, si può scegliere che la temperatura minima del nostro sensore sia abbassata a -40 ° C se il sensore deve essere esposto ad una quota particolarmente elevata.Questo copre il processo di selezione per quanto riguarda la resistenza del sensore alla temperatura; bisogna sempre teenere presente il proprio ambiente operativo!

Collegamento di processo 

Come precedentemente accennato, le dimensioni e i calibri dei diversi sistemi di pressione all’interno di un aereo sono tutt’altro che costanti. Quindi, il prossimo passo nel nostro processo di selezione è determinare il posizionamento ideale per il sensore e selezionare un connettore che faccia in modo che il sensore sia giusto per quel particolare posto. Prendiamo ad esempio un sistema frenante di un aereo. Il sistema idraulico sarà composto da varie misure di tubi e componenti, ma una volta selezionato il posizionamento ideale del sensore è possibile scegliere il collegamento di processo. La STS offre una gamma di misure e diaframmi, inclusi il G ¼ M e il G ½ M, con la scelta aggiuntiva, tra le altre opzioni,del diaframma in Hastelloy e di diaframmi frontali.Questa vasta gamma di scelte possibili ci assicura di poter ordinare un sensore che si inserisca nel nostro sistema di prova alla perfezione, senza aver bisogno di speciali retrofitting per procedere all’installazione, cosa che diminuisce il nostro carico di lavoro!

Guarnizioni 

Gli ultimi importanti componenti del nostro sensore di prova di cui ci occuperemo sono i materiali di tenuta a nostra disposizione. Così come per il connettore di processo, la scelta del materiale per sigillare il tuo sensore dipende fortemente dal fluido che compone il sistema di pressione. Per fortuna per noi nel campo aerospaziale, raramente i nostri sistemi di pressione saranno composti da sostanze corrosive, acidi o altri fluidi sgradevoli. Tuttavia, serve comunque qualche riflessione sulle guarnizioni. In caso di sistema idraulico per il carrello di atterraggio, la scelta standard come guarnizione è la gomma nitrile (NBR). Questo materiale gommoso è ideale per quest’uso,oltre ad essere resistente agli olii e ad altri materiali lubrificanti. Se però prevediamo alte temperature o altre condizioni rigide che sono presenti in un vano motore, allora il Viton sarebbe una scelta molto più adatta data la sua migliore resistenza alla temperatura e durabilità. Ultima ma non per importanza, la gomma EPDM ha una comprovata storia di successi quando si ha a che fare con liquidi per freni. Questi sono solo tre delle tante opzioni di tenuta che la STS offre, con la questione principale che non tutte le guarnizioni sono intercambiabili. Studia il tuo sistema, le opzioni disponibili, e fai la scelta migliore per garantire risultati ottimali del sensore!

A questo punto si è ben preparati per iniziare il processo di selezione del sensore di pressione per i propri test aerospaziali! Abbiamo esaminato il livello di precisione richiesto per il proprio sensore che dipende dal sistema esatto in cui il sensore è posizionato. Siamo poi passati a determinare il corretto livello di resistenza alla temperatura richiesto per le nostre singole applicazioni. A seguire, il collegamento di processo per cui possiamo selezionare varie dimensioni e diaframmi in modo da assicurarci che il sensore sia sempre adattato alle nostre esigenze. Il nostro ultimo punto è stato quello di spiegare le differenze principali tra le varie opzioni di tenuta disponibili e l’applicazione ideale di ognuna di loro. Con queste informazioni è possibile esaminare i componenti principali del tuo sensore di pressione di prova e decidere al meglio per essere sicuro che il sensore scelto sia quasi letteralmente fatto su misura per i propri scopi!

Misurazione di pressione nelle macchine di stampaggio a iniezione

Misurazione di pressione nelle macchine di stampaggio a iniezione

Le macchine di stampaggio ad iniezione funzionano con la migliore precisione possibile. L’azienda svizzera Netstal-Maschinen AG offre macchine di stampaggio a iniezione ad alto rendimento estremamente precise e soluzioni di sistema per l’industria delle bevande, l’industria del packaging e l’industria della tecnologia medica. Negli impianti di alta qualità vengono montati sensori di pressione realizzati dalla STS.

Con una macchina a iniezione per lo stampaggio della plastica vengono prodotti pezzi di plastica finiti a partire da materiali plastici in forma granulare. Tale sistema è composto in modo semplicistico da due componenti: l’unità di iniezione e l’unità di chiusura. Nella prima unità viene preparata la materia prima, che qui viene di norma riscaldata e omogeneizzata in una coclea di costruzione situata in un cilindro idraulico. Nella seconda unità si trova uno strumento che rappresenta il negativo del pezzo di plastica da produrre. Il composto per lo stampo preparato nella coclea viene iniettato sotto pressione nella forma negativa. 

Il monitoraggio delle necessarie condizioni di pressioni è essenziale per la corretta riuscita del processo di iniezione. Per questo vengono montati i sensori nel circuito idraulico degli assi di iniezione. La pressione della massa specifica può essere calcolata sulla base delle pressioni rilevate nella camera durante il processo di iniezione. È di estrema importanza che l’errore di misurazione dei sensori sia minimo, poiché altrimenti la pressione della plastica viene calcolata troppo bassa o troppo alta. 

Se la pressionedellamassa è troppoalta o troppobassa, 

  • influenza la quantità di riempimento iniettata,
  • il pezzo di plastica finito può essere difettoso,
  • si possono verificare perdite dei materiali o danni alla strumentazione,
  • si può giungere ad un blocco dell’impianto. 

Impianti di alta precisione come le macchine di stampaggio a iniezione dell’azienda Netstal-Maschinen AG richiedono trasmettitori di pressione che forniscono risultati completamente affidabili nel campo di misurazione richiesto. Per trovare la soluzione migliore alle esigenze elevate sono stati condotti numerosi test con strumentazioni di diversi produttori. Bisognava verificare non solo la precisione degli strumenti di misurazione, ma anche la loro stabilità a lungo termine con alte temperature. Al banco prova sono stati eseguiti i seguenti intervalli di misurazione:

Immagine 1: Procedimento di controllo standardizzato per la valutazione di un trasmettitore di pressione appropriato. Dopo quattro, sei e otto milioni di cicli di pressione i sensori vengono ogni volta esposti ad un carico di temperatura (Aging – invecchiamento artificiale).

In questi test così approfonditi il sensore di pressione ad alta precisione ATM.1ST della STS ha raggiunto i risultati migliori in termini di tollerabilità, stabilità a lungo termine, precisione e accuratezza nell’intero campo di pressione e temperatura. Nella valutazione particolarmente decisivo è stato soprattutto il fatto che il sensore di pressione, anche dopo lungo tempo, rimane completamente indifferente e alle alte temperature e che a basse pressioni si distingue per una precisione molto elevata.

Immagine 2: Analisi di un trasmettitore di pressionedella STS in relazione al tempo e allatemperatura. OZ (condizione di partenza – in rosso, linea-punto) è stato utilizzato come posizione iniziale, le linee continue dopo ogni intervallo fisso, le linee tratteggiate all’inserimento del processo di invecchiamento secondo il procedimento di controllo nell’immagine 1. Il valore Toleranzfeld Aufnehmer si riferisce alla specifica di produzione (scheda tecnica), le linee continue Toleranzfeld NM sono gli obiettivi della valutazione.

Un ulteriore vantaggio dell ATM.1ST è che grazie alla sua costruzione modulare si adatta senza sforzi ad utilizzi personalizzati.

Panoramica dei dati:

  • Campo di misurazione della pressione: 100 mbar … 1000 bar
  • Campi di misura relativi e assoluti
  • Curva caratteristica: ≤ ± 0.10 / 0.05 % FS
  • Temperatura di funzionamento: -40 … 125°C
  • Errore totale: ≤ ± 0.30 %FS (0 … 70°C)
  • Materiali: acciaio inossidabile, titanio
Monitoraggio affidabile del livello di riempimento nel l’industria carbonifera

Monitoraggio affidabile del livello di riempimento nel l’industria carbonifera

Le miniere sotterranee e le miniere a cielo aperto sono conosciute per le loro difficili condizioni di lavoro. Questo vale anche per la tecnologia adottata. Occorrono, pertanto, strumenti di misurazione resistenti e affidabili per monitorare il livello delle acque freatiche.

In Australia si trova il dieci percento dei depositi di carbone di tutto il mondo. In qualità di principali esportatori di carbone l’industria carbonifera è uno dei settori economici più importanti del continente. L’estrazione della materia prima, però, non è priva di pericoli. I gestori di una miniera a cielo aperto dell’Australia si sono rivolti alla STS alla ricerca di un trasmettitore di pressione per il monitoraggio del livello di riempimento fino a 400 metri di profondità.

Le operazioni minerarie hanno un forte impatto sulle acque freatiche. Le falde acquifere presenti nelle vicinanze delle miniere di carbone si prosciugano,con conseguente abbassamento del cono di depressione. Tale abbassamento modifica le naturali condizioni idrologiche sotterranee, dando luogo a percorsi con minor resistenza. Il risultato è che l’acqua penetra nella miniera a cielo aperto e nei lavori in sotterraneo. Per questo motivo l’acqua che scorre ininterrottamente deve essere pompata via dagli scavi di continuo al fine di garantire un’estrazione facile e sicura della materia prima.

Per monitorare il livello della falda freatica e controllare le pompe impiegate per il drenaggio dell’acqua, i gestori della miniera hanno avuto bisogno di un trasmettitore di pressione per il monitoraggio del livello di riempimento che rispondesse alle loro esigenze. Era richiesto un campo di misurazione della pressione da 0 fino a 40 bar (400 mH2O) di pressione ambientale, nonché un cavo lungo 400 metri. La soluzione fino a quel momento offerta dalla STS, l’ATM.ECO/N/EX, arrivava però solo fino a 25 bar e la lunghezza del cavo era di 250 metri.

Dal momento che la STS è specializzata in soluzioni per la misurazione della pressione personalizzate per il cliente, non si è trattato di una sfida insormontabile. Prontamente è stato sviluppato il trasmettitore di pressione a sicurezza intrinseca per il livello di riempimento ATM.1ST/N/Ex, che rispecchia esattamente i requisiti di pressione ed è dotato di un cavo in teflon lungo 400 metri. Anche la precisione convince con il suo 0,1 percento. Per lo sviluppo del nuovo trasmettitore di pressione la STS ha scelto un cavo in teflon per un pressa cavo sigillato e un tubo di ventilazione aperto (il PUR sarebbe troppo flessibile per questo utilizzo). Inoltre si può avvitare un peso di bilanciamento per garantire una posizione di misurazione dritta e stabile. L’ancoraggio del cavo in acciaio inossidabile, anch’esso avvitabile, aiuta a scaricare la tensione sul cavo elettrico. Il dispositivo, come già rivela il nome, dispone della certificazione EX per l’impiego in aree a rischio esplosione.

L’ATM.1ST/N/Ex con ancoraggio del cavo (a sinistra) e peso di bilanciamento (a destra), entrambi avvitabili.

 In qualità di esperti in trasmettitori di pressione personalizzati, la STS è stata in grado di consegnare l’ATM.1ST/N/Ex in meno di tre settimane. 

Le caratteristiche dell’ATM.1ST/N/Ex in breve: 

  • Campo di misurazione della pressione: 1…250 mH2O
  • Curva caratteristica: ≤ ± 0.1 % FS
  • Errore totale: ≤ ± 0.30 %FS (-5…50 °C)
  • Temperatura di funzionamento: -5…80 °C
  • Temperatura del fluido: -5…80 °C
  • Segnale di uscita: 4…20 mA
  • Materiali: acciaio inossidabile, titanio
  • Compensazione elettronica
  • Disponibile qualsiasi collegamento di processo