Automatikgetriebe gedeihen unter Druck

Automatikgetriebe gedeihen unter Druck

Obwohl verschiedenste Versuche unternommen wurden ein Getriebe zu entwerfen, das die Gänge automatisch auswählt, entwickelten Ingenieure von General Motors (GM) erst im Jahr 1939 eine zufriedenstellende Lösung: Das Bauteil hieß Hydra-Matic und war das erste serienreife vollautomatische Pkw-Getriebe, mit dem etwa 25.000 Oldsmobile-Modelle ausgestattet und verkauft wurden.

Ungefähr 25 Jahre später (1963) wurde Earl A. Thompson, der Leiter der Gruppe von GM-Ingenieuren, welche das Hydra-Matic entwickelten, mit dem Elmer A. Sperry Award geehrt – in Anerkennung „einer ausgezeichneter Ingenieursleistung, die sich in der Anwendung bewiesen und das Transportwesen weiterentwickelt hat, ob an Land, zu Wasser oder in der Luft.“

In den nächsten 75 Jahren wurde die Getriebeautomatik um weitere fünf (oder gar sechs) Gänge erweitert, elektronisch gesteuert und verkleinert. Aber auch nach all den Jahren beruht die Funktionsweise des Automatikgetriebes nach wie vor auf Druck in hydraulischen Leitungen.

Hydraulischer Druck steuert das Verhalten des Automatikgetriebes 

Das Schiebergehäuse (Ventilgehäuse) ist die Schaltzentrale des Automatikgetriebes. Es enthält ein Labyrinth von Kanälen und Durchgängen, durch welche die Hydraulikflüssigkeit zu den zahlreichen Ventilen geleitet wird, welche dann die entsprechenden Lamellenkupplungen oder Bremsband-Servos betätigen, um für jede Fahrsituation weich in den geeigneten Gang zu schalten.

Jedes der vielen Ventile im Schiebergehäuse hat eine bestimmte Aufgabe und ist entsprechend seiner Funktion benannt. Zum Beispiel bewirkt das 2-3 Schaltventil das Hochschalten vom 2. Gang in den 3. Gang; das 3-2 Schaltpunkt-Ventil hingegen bestimmt, wann ein Herunterschalten durchgeführt werden soll.

Das wichtigste Ventil ist das manuell gesteuerte Ventil, das direkt mit dem Schalthebel verbunden ist und verschiedene Durchgänge öffnet und abdeckt, je nachdem, welche in welche Position der Schalthebel gelegt wird. In der Position D: Drive leitet das manuelle Ventil beispielsweise Flüssigkeit zu den Kupplungsscheiben, die den 1. Gang aktivieren. Zu seinen Aufgaben gehört ebenfalls, die Geschwindigkeit und die Drosselklappenstellung zu überwachen, um den optimalen Zeitpunkt zu bestimmen und (abhängig von Last und Geschwindigkeit) für das Umschalten vom 1. in den 2. Gang zu forcieren.

Bei computergesteuerten Getrieben wird das Schiebergehäuse mit elektrischen Magnetventilen ausgestattet, die computergesteuert Flüssigkeit zu den entsprechenden Lamellenkupplungen oder Bremsbändern leiten, um eine präzisere Steuerung der Schaltpunkte zu ermöglichen.

Der durch die Ölpumpe erzeugte Druck wird an Ventile des Hauptleitungsdruckreglers und des Fliehkraftreglers (Governor) sowie an das Drosseldruckventil gelenkt, um das Getriebe zu steuern und zu schmieren. Einige dieser Komponenten wurden ersetzt oder arbeiten mit der elektronischen Steuerung zusammen.

Der durch den Fliehkraftregler erzeugte Druck steigt mit zunehmender Geschwindigkeit des Fahrzeugs an. Ältere Getriebe hatten mechanische Fliehkraftregler, die aus Federn, Fliehscheiben und einem Steuerventil bestanden, um diesen Druck zu steuern. Der Druck des Fliehkraftreglers bestimmt das Hochschalten des Getriebes, während der Drosseldruck für das Herunterschalten verantwortlich ist. Die heutigen Getriebe verwenden Magnetspulen für die Betätigung des Schaltpunkts.

Der Drosseldruck zeigt die Motorlast an. Einige Getriebe verwenden einen Vakuummodulator oder ein Drosselklappengestänge, um das Drosselklappenventil zu betätigen. Die neuesten Fahrzeugmodelle verwenden elektrische Magnetspulen, um die gleichen Ergebnisse zu erzielen.

Getriebe wechseln Gänge durch das Betätigen der Schaltventile. Das Ventil wird an einem Ende durch den Druck des Fliehkraftreglers betätigt, am anderen Ende – unterstützt durch eine Feder – durch den Drosseldruck. Wenn ein Fahrzeug aus dem Stillstand beschleunigt wird, ist der Drosseldruck höher als der Druck des Fliehkraftreglers, sodass das Auto im ersten Gang bleibt. Mit zunehmender Fahrzeuggeschwindigkeit steigt der Druck des Fliehkraftreglers (beeinflusst durch die Fahrzeuggeschwindigkeit), bis er den Drosseldruck übersteigt und dadurch ein Hochschalten bewirkt.

Ein Herunterschalten wird ausgelöst, wenn der Drosseldruck den Druck des Fliehkraftreglers übersteigt. Dies liegt an der erhöhten Motorlast. Diese beiden Drücke steuern die Betätigung des Schaltventils. Schaltventile steuern die Aktoren (Kupplungen und Bremsbänder), welche die Zahnräder eines Planetengetriebes (Umlaufrädergetriebes) antreiben und arretieren.

Einen reibungslosen Gangwechsel ohne übermäßiges „Durchrutschen“ zu erreichen ist keine Kleinigkeit: Der Druck, der eine Reihe von Bremsbändern schließt und andere öffnet, muss nicht nur zum richtigen Zeitpunkt, sondern auch so eingesetzt werden, dass das Umschalten ohne spürbare Stöße erfolgt. Gesteuert wird dies alles durch den hydraulischen Leitungsdruck.

Während der Entwicklung eines Automatikgetriebes wird der Leitungsdruck an den verschiedenen Öffnungen in Echtzeit gemessen und mit den Designvorgaben abgeglichen, um die Einhaltung der Designparameter zu bestätigen. Gleichzeitig werden die Schaltpunkte und die Schaltqualität gemessen und subjektiv bewertet, um zu gewährleisten, dass sowohl sicheres Fahrverhalten als auch Leistungsziele erreicht werden. Diese Messungen erfordern extrem präzise und qualitativ hochwertige Drucktransmitter, wie sie von STS produziert werden.

Diese während der Entwicklung aufgezeichneten Messergebnisse sind entscheidend, nicht nur um präzise Schaltvorgänge zu gewährleisten, sondern auch für die Entwicklung der einzigartigen Spezifikationen des jeweiligen Getriebes. Diese werden in Werkstätten im Rahmen der Fehlerdiagnose verwendet.

Mit der Zeit Schritt halten

Aufgrund des großen Einflusses von Emissionsvorschriften auf die Entwicklung moderner Fahrzeuge sind Hersteller stetig gehalten, das Design zu überdenken: Ziel ist es, die Effizienz zu steigern, ohne dabei Leistungseinbußen hinnehmen zu müssen.

Der koreanische Autohersteller KIA hat im Zuge eines Entwicklungsprogramms bei der Konzeption des kompakten 8-Gang-Automatikgetriebes (8AT) 143 neue Technologien patentieren lassen. Dieses neue Getriebe ermöglicht eine sanfte Beschleunigung aus dem Stand, eine höhere Kraftstoffeffizienz, verbesserte NVH-Eigenschaften (Noise Vibration Harshness / hör- und spürbarer Schwingungen) und bei höheren Drehzahlen eine stärkere Beschleunigung als ein Automatikgetriebe mit weniger Gängen.

Um den Kraftstoffverbrauch des 8AT zu verbessern, haben KIA-Ingenieure die Größe der Ölpumpe (die Hauptquelle für die Leistungsverluste in einem Automatikgetriebe) deutlich reduziert und die Struktur des Ventilgehäuses vereinfacht. Mithilfe der kleinsten Ölpumpe, die bei der Getriebefertigung in dieser Klasse eingebaut wird, kann das 8AT Hydrauliköl effizienter nutzen, da es stets gleichmäßig über die Einheit verteilt wird.

KIAs Entwicklungsteams bauten außerdem ein direkt ansteuerbares Ventilgehäuse ein: Dadurch wird eine direkte Betätigung des Magnetventils der Kupplung ermöglicht, was bisher durch mehrere Regelventile geschah. Dadurch konnte die Anzahl der Regelventile von 20 auf 12 verringert werden, was nicht nur schnellere Gangwechsel erlaubt und eine direktere mechanische Verbindungzum Motor herstellt, sondern auch der kompakteren Bauform zugutekommt.

Die Herausforderung dieses revolutionären Ansatzes bestand darin sicherzustellen, dass die kleinere Pumpe in der Lage ist, die verschiedenen Bauteile – die für den Betrieb des Automatikgetriebes erforderlich sind – mit Druck von bis zu 20 bar mit einer ausreichenden Menge von Hydraulikflüssigkeit zu versorgen.

Während der Entwicklungstests wurde die Einheit auf Betriebstemperatur gebracht und dann der Hauptleitungsdruck sowohl im Leerlauf als auch bei weit geöffneter Drosselklappe gemessen, um sicherzustellen, dass die kleinere Pumpe dieser Aufgabe gewachsen war. Einmal mehr ist anzumerken, dass wegen der entscheidenden Bedeutung der Testergebnisse nur qualitativ hochwertige Drucktransmitter mit Labor-Zertifizierung verwendet wurden.

Präzise Druckmessung ist entscheidend für die sichere und kostengünstige Fahrzeugentwicklung

Präzise Druckmessung ist entscheidend für die sichere und kostengünstige Fahrzeugentwicklung

Schon die alten Ägypter wussten sich das hydraulische Prinzip zunutze zu machen; aber mit der Weiterentwicklung der Systeme mussten auch die erforderlichen Werkzeuge für den Entwurf und die Entwicklung dieser anspruchsvollen, oft kritischen Schaltkreise angepasst werden.

Das erste Manometer wurde im 17. Jahrhundert von Evangelista Torricelli erfunden; von dieser Urform über das mechanische Bourdon-Manometer bis hin zu den heutigen piezoresistiven Drucksensoren waren Entwickler stets auf der Suche nach den besten Geräten für die Druckmessung und haben an der Verbesserung des Designs gearbeitet. In jüngster Zeit verlassen sich insbesondere Ingenieure in der Automobilbranche in der Fahrzeugentwicklung und bei der Durchführung von Fahrzeugtests auf solche qualitativ hochwertigen, präzisen Druckmessumformer.

Diese aktuellen Druckwandler sind gewöhnlich in der Lage, einen Vollausschlag von etwa 350 mbar bis 700 bar unter anhaltenden Temperaturen von -40 °C bis 150 °C aufzuzeichnen; und das Beste ist: Qualitätssensoren wie die von STS weisen in der Regel eine Hysterese und eine Reproduzierbarkeit von etwa 0,001 % auf!

Abbildung 1: Hochpräziser Drucktransmitter ATM.1ST mit einer Genauigkeit von bis zu 0,05 % (bezogen auf den Messbereich).

Qualitativ hochwertige Druckmessumformer werden in der Entwicklung von maßgeblichen Fahrzeugsystemen eingesetzt

Das Maß an Reproduzierbarkeit (der Messergebnisse) ist entscheidend für die Konzeption und Entwicklung unter anderem von Kühl- und Kraftstoffzufuhrsystemen. Zur präzisen Aufzeichnung von Informationen setzen Designer während der Entwicklung auf eine stabile Druckmesstechnik; somit können sie die Auswirkungen selbst kleinster Konstruktionsänderungen dokumentieren, ohne zu befürchten, dass der Sensor nicht in der Lage ist, die Ergebnisse zu reproduzieren.

Bei einer kürzlich erfolgten Neugestaltung eines Motorkühlsystems, um die durch die Elektrifizierung reduzierten parasitären Verluste zu nutzen, wurden die Ingenieure eines OEMs der Luxusklasse zunächst mit einem Druckabfall über die Pumpe von etwa 250 kPa konfrontiert. Um das Problem identifizieren zu können, mussten die Ingenieure präzise Druckmessungen aufzeichnen, bevor die Modifikation der neuen elektrischen Pumpe in Angriff genommen werden konnte. Nachdem sie die von mehreren Druckstransmitter protokollierten Ergebnisse untersucht hatten, änderten sie das Design. Dadurch konnten der Druckabfall auf weniger als 100 kPa und die parasitären Verluste um 500 W reduziert werden.

Und obwohl die Elektrifizierung und die elektronische Steuerung in Fahrzeugsystemen eine zunehmend bedeutende Rolle spielen, beruht der reibungslose Betrieb vieler kritischer Schaltkreise nach wie vor auf dem hydraulischen Leitungsdruck.

Während der Entwicklung eines Automatikgetriebes wird z. B. der Leitungsdruck in Echtzeit gemessen und mit den Designvorgaben abgeglichen, um die Einhaltung der Design-Parameter zu belegen. Gleichzeitig werden die Schaltpunkte und die Schaltqualität gemessen und subjektiv bewertet, um zu gewährleisten, dass sowohl ein sicheres Fahrverhalten als auch die Leistungsziele erreicht werden.

Ungeachtet des Stellenwertes von qualitativ hochwertigen Drucksensoren für die Aufzeichnung wertvoller Daten in der Test- und Entwicklungsphase können diese Tools auch im Rahmen der Industrialisierung von Zukunftstechnologien erheblich zur Reduzierung von Entwicklungskosten beitragen.

Drucksensoren stellen sicher, dass Zukunftstechnologien den in sie gesetzten Erwartungen gerecht werden

Mit dem Ziel, die Leistung stark verkleinerter Motoren zu verbessern, nutzen Hersteller die Vorteile der zusätzlichen Leistung, welche die 48-Volt-Elektrifizierung bietet, in dem sie den Turbolader durch einen elektrisch angetriebenen Kompressor ersetzen.

Da die Technologie noch nicht ausgereift ist, stehen den Ingenieuren nicht viele Forschungs- und Testdaten zur Verfügung, um die Grenzen der E-Charge-Kompressoren zu untersuchen. Obwohl Strömungslehre und Elektrotechnik gute Grundlagen bieten, auf die man aufbauen kann, ist es dennoch unerlässlich, jede Theorie einem Praxistest zu unterziehen.

Dafür muss der Ladedruck so konfiguriert werden, dass er die Leistung des Motors optimiert, während die Energierückgewinnung aus dem Abgas maximiert wird. Dies wiederum macht den Einsatz von äußerst präzisen Drucksensoren erforderlich, die präzise Messungen über einen großen Bereich von Ladedrücken und -temperaturen liefern. Diese Sensoren müssen auch gegen Vibrationen und chemischen Einflüssen resistent sein.

Während Hersteller weltweit nach wie vor Forschung auf dem Gebiet der Elektrofahrzeuge betreiben, spielen verschiedene Gruppen mit der Idee, anstatt auf Akkus auf die Nutzbarmachung von Wasserstoff zur Stromerzeugung zu setzen.

Wasserstoff-Brennstoffzellen, welche eine Protonenaustauschmembran nutzen, auch Polymer-Elektrolyt-Membran (PEM)-Brennstoffzelle (PEMBZ) genannt, werden schon in der Kleinserienproduktion von Fahrzeugen wie dem Toyota Mirai verwendet.

Obwohl kleine PEM-Brennstoffzellen häufig bei normalem Luftdruck betrieben werden, laufen größere Brennstoffzellen (BZ) – von 10 kW oder mehr – in der Regel bei höheren Drücken. Wie auch bei herkömmlichen Verbrennungsmotoren dient eine Druckerhöhung in einem BZ-Stack der Steigerung der spezifischen Leistung, also dazu, bei gleicher Zellengröße mehr Leistung zu entnehmen.

Normalerweise werden PEM-Brennstoffzellen in einem Druckbereich zwischen annähernd Umgebungsdruck und ca. 3 bar und bei Temperaturen zwischen 50 °C und 90 °C betrieben. Bei höheren Betriebsdrücken wird zwar eine hohe Leistungsdichte erzielt, aber der Nettowirkungsgrad des Systems fällt aufgrund der für die Kompression der Luft benötigten Energie möglicherweise geringer aus; daher ist es wichtig, den Druck genau auf die Anforderungen der jeweiligen Brennstoffzelle abzustimmen.

Ebenso wie bei der Messung des Ladedrucks eines Verbrennungsmotors ist dies nur durch genaue Druckmessungen mittels hochwertiger Drucksensoren möglich, die sorgfältigst für die Umgebung kalibriert wurden. Diese Druckmessungen werden dann mit der Leistung der BZ-Stacks verglichen, um parasitäre Verluste zu minimieren und die elektrische Leistung zu optimieren.

Es bleibt festzuhalten: Unabhängig von dem Kurs, den die Automobilindustrie in Bezug auf Zukunftstechnologien einschlagen wird, bleiben präzise Drucksensoren auch weiterhin der Schlüssel für die Entwicklung von sicheren und leistungsfähigen Fahrzeugen.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!