Gesicherte Grund- und Oberflächen-Wasserüberwachung in Rumänien

Gesicherte Grund- und Oberflächen-Wasserüberwachung in Rumänien

Es braucht ein lückenloses Kontrollsystem mit Alarmfunktion, um präzise Wasserstandsmessungen durchzuführen und verlässliche Prognosen für die Trinkwasserversorgung zu erstellen und Hochwasser zu antizipieren. STS hat zusammen mit seinem Partner MDS Electric Srl ein umfassendes System zur Grund- und Oberflächen-Wasserverwaltung in Rumänien realisiert.

Rumänien bezieht einen Grossteil seines Trinkwassers aus Oberflächengewässern wie der Donau sowie aus Grundwasser-Ressourcen. Daher ist eine ordnungsgemässe Bewirtschaftung der natürlichen Ressourcen von grosser Bedeutung.

Zur Sicherung der Trinkwasserversorgung und zum Schutz vor Überschwemmungen investierte das Land in eine umfassende hydrologische Messinfrastruktur.

Abbildung 1: Grundwasser Messstelle 

In Zusammenarbeit mit dem rumänischen Kooperationspartner MDS Electric Srl wurden über die vergangenen Jahre daher über 700 Datenlogger und mehr als 350 Datenübertragungssyteme im ganzen Land installiert – darunter auch in abgelegenen Gegenden. Aus diesem Grund wurde vornehmlich in batteriebetriebene Messinstrumente investiert, die jeweils die aktuelle Situation an den Flüssen des Donaugebiets und den Grundwasserbrunnen des Landes überwachen.

Anforderungsspezifische Messlösungen 

Ein komplexes Unterfangen: Jede der eingesetzten Tauchsonden und Datenübertragungssysteme erfordern eine andere Beurteilung und Behandlung, um den jeweiligen Bedingungen gerecht zu werden. Unerlässlich dabei ist auch eine automatische Alarmfunktion, falls festgelegte Grenzwerte überschritten werden.

Die permanente Überwachung des Wasserstands an wichtigen Knotenpunkten für die Trinkwasserversorgung sowie der Flüsse im Donaugebiet ist an eine Vielzahl Anforderungen geknüpft:

  • Eine automatisierte und zuverlässige Datenübertragung via M2M-Protokoll
  • Automatische Alarmfunktion bei Grenzwertüberschreitung
  • Überwachung von Pegelstand und Wassertemperatur sowie in einigen Fällen der Umgebungstemperatur
  • Eine Server-Lösung mit Funktionen zur Visualisierung, Bewertung und Verarbeitung der gemessen Daten sowie integrierter Datenbank
  • Einfache Installation sowie Instandhaltung
  • Kundendienst vor Ort

Für die Umsetzung der gross angelegten Projekte wählte STS die Datenlogger zur Druck- und Temperaturmessung DL/N 70 und WMS/GPRS/R/SDI-12  oder – je nach Anforderung – den digitalen Datentransmitter DTM.OCS.S/N mit Modbus Schnittstelle, um eine höchstpräzise Wasserstandsmessung mit 0,03 Prozent Kennlinie an kritischen Stellen sicherzustellen.

In Zusammenarbeit mit dem lokalen Partner MDS Electric Srl konnte STS das komplette Wasserstandüberwachungssystem aus einer Hand realisieren. Jeder Einsatzort wurde von den MDS Electric Srl und STS Experten vor Ort evaluiert, um an jedem einzelnen Messpunkt eine passgenaue Lösung zu installieren. Auch auf die Langzeitstabilität der eingesetzten Druckmesstechnik ist verlass. So glänzt der Modbus Transmitter DTM.OCS.S/N mit ausgezeichneter Langzeitstabilität mit weniger als 0,1 Prozent Gesamtfehler pro Jahr. Dank des geringen Energieverbrauchs und einem widerstandsfähigen Design übt der Sensor seinen Dienst über Jahre hinweg weitgehend wartungsfrei aus.

Weitere Vorteile des DTM.OCS.S/N im Überblick:

  • Druckmessbereich: 200mbar…25bar
  • Kennlinie: ≤ ± 0.15 / 0.05 / 0.03 % FS
  • Betriebstemperatur: -40… 85 °C
  • Mediumtemperatur: -5…80 °C
  • Schnittstelle: RS485 mit Modbus RTU (standardisiertes Protokoll)
  • Simple Implementierung in das bestehende System
  • Einfache Einstellung von Steigung und Offset

 

Altlasten: Grundwasserdekontamination braucht robuste Pegelsonden

Altlasten: Grundwasserdekontamination braucht robuste Pegelsonden

Ob alte Mülldeponien, Kohlehalden, ehemalige Militärplätze oder Raffinerien: Übrig bleibt kontaminierter Boden, der eine Gefahr für Mensch und Umwelt ist. Bei der Sanierung dieser Orte braucht es ob der oft aggressiven Gefahrenstoffe widerstandsfähige Pegelsonden.

Altlasten sind nicht nur durch gesundheits- oder umweltschädliche Veränderungen des Bodens gekennzeichnet. Bei fehlenden Sicherungsmassnahmen (wie bei alten Mülldeponien) und je nach Bodenbeschaffenheit werden die gefährlichen Stoffe durch Regen bis ins Grundwasser gespült. Je nach Nutzungsart können eine Reihe unterschiedlicher Gefahrenstoffe angetroffen werden, darunter u.a.:

  • Schwermetallverbindungen: Kupfer, Blei, Chrom, Nickel, Zink und Arsen (Halbmetall)
  • Organische Stoffe: Phenole, Mineralöl, Benzole, chlorierte Kohlenwasserstoffe (LCKW), aromatische Kohlenwasserstoffen (PAK)
  • Salze: Chloride, Sulfate, Karbonate

Dekontamination der Grundwasserversorgung

Bei der Sanierung von Altlasten ist neben der Säuberung des Bodens auch die Kontrolle und Reinigung des Grundwassers von grosser Bedeutung. Ohne zuverlässige Pegelsonden, die den widrigen Bedingungen standhalten können, ist dies nicht möglich.

Üblicherweise läuft das Dekontaminationsverfahren wie folgt ab: Das kontaminierte Grundwasser wird an die Oberfläche gepumpt und aufbereitet. Als gefiltertes Spülwasser wird es dann wieder in den Kontaminationsherd gebracht. Damit das Spülwasser nicht zu einer dem Kontiminationsherd abgewandten Seite fliesst, werden aktive hydraulische Verfahren zur Schutzinfiltration eingesetzt. Wasser wird über mehrere Brunnen um das eigentliche Dekontaminationsverfahren herum in den Boden gegeben. Die dadurch hergestellten Druckverhältnisse bilden gewissermassen eine Sperrwand und bewirken, dass das Spülwasser zum Kontaminationsherd fliesst. Um diesen Prozess zu steuern und zu überwachen, braucht es Pegelsonden.

Abbildung 1: Ablauf eines Dekontaminationsverfahrens

Pegelsonden werden natürlich auch im Nachgang der Sanierungsarbeiten eingesetzt. So werden die betreffenden Stellen noch lange Zeit nach Abschluss der Arbeiten überwacht, um zu prüfen, ob es auffällige Änderungen des Wasserspiegels oder der Fliessrichtung gibt.

Natürlich werden Pegelsonden auch bei aktivem Betrieb potenziell umweltschädigender Anwendungen eingesetzt. Neuere Mülldeponien sind wie ein undurchlässiges Becken aufgebaut. Der Grundwasserspiegel unter der Deponie wird abgesenkt, so dass im Falle einer Leckage kein Wasser in angrenzende Gebiete fliessen kann. Auch hier sind die jeweiligen Wasserstände durch Pegelsonden zu überwachen.


Pegelsonden in kontaminierten Gewässern: Hohe Anforderungen

Anwender im Bereich Dekontamination von Altlasten sollten bei der Wahl geeigneter Pegelsonden sehr sorgfältig vorgehen. Aufgrund der Vielzahl von Stoffe, die im Wasser gelöst sein können, gibt es nicht die eine Lösung, die für jeden Fall verlässlich arbeitet. Dabei sind verschiedene Aspekte zu beachten, die wir im Folgenden kurz darstellen:

Materialien

Gehäuse

In den meisten Anwendungen ist ein hochwertiger Edelstahl, wie ihn STS verwendet, ausreichend, um die Messzelle vor aggressiven Stoffen zu schützen. Kommt es zu Kontakt mit Salzwasser, ist ein Titangehäuse zu wählen. Wenn mit galvanischen Effekten zu rechnen ist, sollte eine Pegelsonde aus PVDF gewählt werden.

Abbildung 2: ATM/NC chemisch beständige Pegelsonde mit PVDF Gehäuse

Sondenkabel

Weitaus kritischer als die Wahl eines geeigneten Gehäuses ist unserer Erfahrung nach die Wahl des Sondenkabels. Aufgrund von schleichenden Diffusionsprozessen ist der Prozess der Zerstörung nicht sofort ersichtlich. Oftmals ist er auch bei entstandenem Schaden nicht von aussen zu erkennen. Daher ist besondere Vorsicht bei der Konsultation von Beständigkeitstabellen geboten: Denn diese sagen in der Regel wenig über den Sonderfall Sondenkabel aus. In der Mitte eines Sondenkabels befindet sich ein Luftröhrchen, das dem Relativdruckausgleich dient. Wenn das Material des Kabels nicht zu hundert Prozent beständig ist, können Grundstoffe durch den Kabelmantel diffundieren und über das Luftröhrchen in den Sensorchip wandern.

Je nach den zu erwartenden Stoffen können Anwender bei STS auf PE-, PUR oder FEP-Kabel zurückgreifen. Letzteres kann auch bei sehr hohen Temperaturen von bis zu 110 °C eingesetzt werden.

Montage

Kabelverlegung

Alte Deponien oder Industriestandorte sind raue Umgebungen. Nicht nur die Gefahrenstoffe können die Funktionalität der eingesetzte Pegelsonden beeinträchtigen. Es ist darauf zu achten, dass der Kabelmantel nicht durch mechanische Belastungen (z.B. Schutt) beschädigt wird. Auch Scheuer- und Knickstellen sind zu vermeiden. Es empfiehlt sich daher, bei der Kabelverlegung spezielle Schutzschläuche, wie sie auch von STS angeboten werden, zu verwenden.

Zugentlastung

Die Druckfestigkeit von Pegelsonden variiert von Hersteller zu Hersteller. Bei STS sind alle Pegelsonden standardmässig bis zu 250 Meter druckfest und das Kabel ist bis zu dieser Tiefe auch für normale Zugbelastungen ausgelegt. Dennoch sollten Anwender bei schwierigen Montagebedingungen über die Verwendung einer Zugentlastung nachdenken.

Befestigung

Wird die Sonde bei fliessenden Gewässern oder Tanks mit Rührwerken eingesetzt, kann diese entweder mit einem G ½ Gewinde am Kabelaustritt (Rohrbefestigung) oder mit einer Klemmringverschraubung (15 mm) geliefert werden.

Explosionsschutz

In Anwendungen, bei denen mit einer Reihe gefährlicher Stoffe zu rechnen ist, muss unbedingt auch auf einen Explosionsschutz geachtet werden. Auskunft darüber gibt die internationalen Standards entsprechende ATEX-Zulassung.

Wasser trotz Trockenzeit

Wasser trotz Trockenzeit

Wasserbau Experten des Karlsruher Instituts für Technologie (KIT) haben in einer Karsthöhle auf der indonesischen Insel Java ein unterirdisches Stauwerk mit integrierter Wasserkraftanlage errichtet. Das 100m unter der Erdoberfläche gelegene Kraftwerk liefert nun während der Trockenzeit reichlich Wasser aus der Höhle. Dabei messen zwei Datenlogger die Wasserhöhe vor und hinter der Staumauer. Der Pegel des Oberwassers beträgt 15 – 20 m, während er im Unterwasser, wo das Wasser wieder aus der Turbine austritt, höchstens 2 m erreicht.

Das Karstgebiet Gunung Kidul an der Südküste Javas ist eine der ärmsten Regionen Indonesiens. Für eine ertragreiche Ernte ist der Boden zu karg und in der Trockezeit versiegen die Fliessgewässer. Das Wasser der Regenzeit versickert zwar rasch, es sammelt sich aber in einem unteririschen Höhlensystem. Dieser natürliche Wasserspeicher wurde mit dem Höhlenkraftwerk erschlossen. Die Tatsache, dass selbst in der Trockenzeit über 1’000 Liter Wasser/s durch die Höhle Bribin fliessen, spricht für die ideale Lage des Stauwerks. Anstelle komplexer Turbinen wird die mechanische Energie zum Antrieb der Förderpumpen über invers betriebene Kreispumpen erzeugt. Die fünf parallel betriebenen Fördermodule sind somit sehr kostengünstig und benötigen lediglich geringen Betriebs- und Wartungsaufwand. Die Förderpumpen drücken einen Teil des Wassers 220 m hoch in einen auf einem Berg gelegenen Speicher mit dem Namen Kaligoro-Reservoir. Mit dem geglückten Probeeinstau wurde der Knackpunkt des Projekts überwunden. Die Höhle hält das Wasser tatsächlich und die notwendige Stauhöhe von 15 m wird erreicht.

Im März 2010 wurde die Anlage an die indonesischen Behörden übergeben. Nun kann sie 80’000 Menschen mit bis zu 70 Liter Wasser am Tag versorgen. Bisher standen den Bewohnern in der Trockenzeit 5 – 10 Liter am Tag für Körperpflege, Haushalt und Vieh zur Verfügung. Übrigens, jeder Deutsche verbraucht dafür im Schnitt 120 Liter.

Funktion der Drucklogger

Die Drucklogger messen die Wasserhöhe vor und hinter der Staumauer. Die Normalhöhe ist 15 m, im Hochwasserfall kann es bis zu 20 m werden. Die andere Sonde misst den Wasserstand im Unterwasser, nämlich dort, wo das Wasser aus der Turbine austritt. Dort werden Höhen bis 2 m erfasst. Die Wahl fiel auf den Drucklogger von STS wegen ihrer hohen Überlastfestigkeit von 3x Messbereichsendwert, der geringen Kennlinienabweichtung von maximal 0,1% und der hohen Langzeitstabilität zwischen 0,1 % und 0,5 % FS pro Jahr.

Die Pegellogger bieten Druckbereiche zwischen 0 – 100 mbar und 0 – 600 bar und ermöglichen somit Pegelmessungen im Bereich von 0 – 100 cmWS bis 0 – 6’000mWS. Das Messintervall ist zwischen 0,5 s und 24 h einstellbar. Der Messwertspeicher von bis zu 1,5 Millionen Messwerten und ein geringer Sondendurchmesser zeichnen die Geräte aus. Ausserdem kann man handelsübliche Litiumbatterien mit wenigen Handgriffen vor Ort austauschen.

Variable Speicherintervalle in Abhängigkeit vom Druck oder der Zeit erlauben flexible Messungen. Durch die Verwendung verschiedener Materialien wie Edelstahl, Titan, PUR, PE oder Teflonkabel erreicht man eine hohe Medienverträglichkeit für verschiedenste Anwedungen. Neben der Pegelaufzeichnung von Grundwasser, Brunnen, Bohrlöchern, Seen und Flüssen eignen sich die Pegellogger auch zur Dichtigkeitsprüfung im Gas-, Wasser- und Rohrleitungsbau, zur Rohrnetzanalyse sowie zur Druckprüfung im Gas-, Wasser- und Fernwärmerohrnetz. Auch in Gasdruck-Regelstationen sowie zum Nachweis eines konstanten Versorgungsdrucks haben sie sich optimal bewährt.

Quellen:   Karlsruher Institut für Technologie (KIT) – Institut für Wasser und Gewässerentwicklung (IWG)

Hydrostatische Druckmessung mit piezoresistiven Pegelsonden

Hydrostatische Druckmessung mit piezoresistiven Pegelsonden

Lebensspender, Lebensgefahr oder einfach nur eine Erfrischung im Sommer: Das Element Wasser bestimmt das tägliche Leben auf der Erde auf vielfältige Weise. Ob seiner Bedeutung ist eine gesicherte Überwachung dieses Elements unerlässlich.

Was man nicht messen kann, kann man auch nicht effizient bewirtschaften. Von der Frischwasserförderung über die Trinkwasseraufbereitung, Trinkwasserspeicherung, die Messung des Wasserverbrauches, der Abwasseraufbereitung bis hin zur Hydrometrie: Ohne korrekte Eingangsgrössen kann nicht wirtschaftlich gearbeitet und geplant werden. Um die heute komplexe hydrometrische Infrastruktur zu erfassen, stehen eine Reihe Geräte und Verfahren zur Auswahl. Der Klassiker der Wasserstandmessung ist dabei sicherlich die Pegellatte, bei der eine Genauigkeit von +/- 1 cm anzulegen ist und die natürlich noch völlig „analog“ funktioniert – also unter Augenschein genommen werden muss und ohne elektronische Datenübertragung auskommt. Eine Remote-Übertragung der gemessenen Daten leisten dafür heute weitaus fortschrittlichere und präzisere Instrumente: Piezoresistive Drucksonden zur Wasserstandmessung in Grund- und Oberflächengewässern.

Pegelmessung mit Drucksensoren

Drucksensoren zur Pegelmessung werden am Grund des zu überwachenden Gewässers angebracht. Im Gegensatz zur Pegellatte kann man sie in aller Regel also nicht in Augenschein nehmen, ohne dabei nass zu werden. Das ist auch nicht nötig. Denn piezoresistive Pegelsonden wurden entwickelt, um den heutigen Anforderungen hinsichtlich Prozessautomatisierung und -kontrolle gerecht zu werden. Dazu gehört selbstredend, dass Pegelstände ohne menschliches Zutun gemessen werden können, was eine kontinuierliche Überwachung an schwer zugänglichen Orten erst ermöglicht.

Hydrostatische Pegelsonden erfassen den hydrostatischen Druck am Grund des Gewässers. Der hydrostatische Druck verhält sich proportional zur Höhe der Flüssigkeitssäule. Er ist des Weiteren abhängig von der Dichte der Flüssigkeit und der Erdanziehungskraft. Nach dem Pascal’schen Gesetz ergibt sich daraus die folgende Berechnungsformel:

p(h) = ρ * g * h + p0

p(h) = hydrostatischer Druck

ρ= Dichte der Flüssigkeit

g = Erdbeschleunigung 

h = Höhe der Flüssigkeitssäule

Wichtige Vorkehrungen zur reibungslosen Füllstandsüberwachung

Dadurch, dass piezoresistive Pegelsonden am Boden des Gewässers platziert werden, sind sie von Oberflächeneinflüssen geschützt. Weder Schaum noch Treibgut können die Messungen beeinflussen. Natürlich müssen sie an den zu erwartenden Bedingungen unter Wasser angepasst sein. Bei Salzwasser ist beispielsweise eine Pegelsonde mit Titangehäuse zu bevorzugen. Ist mit galvanischen Effekten zu rechnen, ist ein Messgerät aus PVDF die beste Wahl. In den meisten Süssgewässern ist ein hochwertiger Edelstahl völlig ausreichend. Darüber hinaus ist eine ausreichende Erdung der Pegelsonden unabdingbar, um beispielsweise Schäden durch Blitzeinschlag vorzubeugen (mehr zu diesem Thema lesen Sie hier).

Moderne Pegelsonden: Alle Daten, ein Gerät

Piezoresistive Pegelsonden können zur Füllstandüberwachung in offenen Gewässern wie Seen, in Grundwasservorkommen sowie in geschlossenen Tanks eingesetzt werden. Handelt es sich um ein offenes Gewässer, wird mit Relativdrucksonden gearbeitet. Bei diesen Geräten wird über eine Kapillare im Drucksondenkabel für den Luftdruckausgleich gesorgt. In Tanks wird üblicherweise ein Differenzdrucksensor verwendet, da die auf die Flüssigkeit drückende Gasdecke miteinbezogen werden muss (mehr zu diesem Thema lesen Sie hier).

Da piezoresistive Pegelsonden ihren Dienst weitestgehend autark verrichten und auch für sehr hohe Drücke optimiert werden können, sind Messungen in sehr grosser Tiefe möglich. Der Tiefe sind theoretisch kaum Grenzen gesetzt, das Drucksondenkabel muss lediglich lang genug sein.

Abbildung 1: Beispiele von Pegelsonden zur hydrostatischen Druckmessung

Abgesehen davon, dass hinsichtlich der Tiefe kaum Grenzen gesetzt sind, sind diese modernen Messgeräte auch äusserst vielseitig. Schliesslich ist nicht nur der Pegelstand eines Gewässers für den Menschen von Interesse. In Bezug auf die Überwachung von Grundwasser ist auch die Wasserqualität von grosser Bedeutung. Die Reinheit eines Grundwassereservoirs lässt sich beispielsweise auch über dessen Leitfähigkeit bestimmen: Je geringer die Leitfähigkeit, desto reiner das Wasser (mehr zum Thema Leitfähigkeit lesen Sie hier). Neben Leitfähigkeitssensoren sind Pegelsonden heute auch mit integrierter Temperaturmessung erhältlich. Somit ermöglichen piezoresistive Pegelsonden eine grosse Bandbreite an Überwachungsaufgaben und sind ohne Frage in den meisten Fällen der Pegellatte vorzuziehen.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!