Besserer Schutz vor Klimaanomalien mit zuverlässigen Pegelsonden

Besserer Schutz vor Klimaanomalien mit zuverlässigen Pegelsonden

Russland hatte in den vergangenen Jahren verstärkt mit Umweltkatastrophen aufgrund extremer Wetterbedingungen zu kämpfen. Das führte nicht nur zu massiven materiellen Schäden, sondern kostete auch Menschenleben. Ein umfangreiches Strukturprogramm für bessere Wettervorhersagen soll die Risiken eindämmen und die Forschung zum Klimawandel unterstützen.

Wetteranomalien wie eine ausgedehnte Dürre im Jahr 2010 oder schwere Hochwasser in der Amurregion im Jahr 2013 sorgten für grosse Aufmerksamkeit und Betroffenheit in Russland und darüber hinaus. Der Bundesdienst für Hydrometeorologie und Umweltüberwachung (Roshydromet) ist in Russland für hochpräzise Wettervorhersagen zuständig und soll im Rahmen des Hydrometeorological Services Modernization Project-II weiter gestärkt werden. Daher werden etwas mehr als 139 Millionen Dollar investiert.

Das gross angelegte Modernisierungsprojekt unterstützt Roshydromet dabei, die russische Bevölkerung sowie kommunale Regierungen mit zuverlässigen und zeitnahen Informationen zu Wetter, Hydrologie und Klima zu versorgen. Gleichzeitig soll Russland besser in das globale System meteorologischer Dienste integriert werden.

Die einzelnen Projekt-Massnahmen enthalten:

  • die Stärkung der Informations- und Kommunikationstechnologien zur Bereitstellung von Daten zu Wetter, Klima und Hydrologie,
  • die Modernisierung des Beobachtungsnetzwerks,
  • die Stärkung von Institutionen,
  • einen optimierten Zugriff auf Daten und Informationen von Roshydromet,
  • die Verbesserung das Katastrophenschutzes.

Bei der Modernisierung von Roshydromets hydrologischem Beobachtungsnetzwerk in den Flüssen Lena, Jana, Indigirka, Vilui und Kolyma lag besonderes Augenmerk auf Überwachungstechnologie, die weitestgehend wartungsfrei in schwer zugänglichen Gebieten und unter rauen Bedingungen wie Permafrost zuverlässig arbeitet.

Abb. 1: Übersicht der Messstellen

Ein Teil der dafür nötigen Messensorik wurde von STS bereitgestellt und in Zusammenarbeit mit dem russischen Partnerunternehmen Poltraf CIS Co. Ltd. an 40 hydrologischen Messstationen installiert. Das Projekt beinhaltete folgende Anforderungen:

  • Die permanente Überwachung von Wasserstand und Wassertemperatur sowie die Messung von Regen und Schnee. Dazu gehört auch die Installation von Überwachungskameras, um die Entstehung von Eis an strategisch wichtigen Punkten im Blick zu behalten.
  • Die automatische und störungsfreie Übermittlung der Daten via GPS oder Satellit.
  • Eine Alarmfunktion bei der Überschreitung definierter Grenzwerte.
  • Eine Serverlösung zur Speicherung der gesammelten Daten mit einer Software zur Visualisierung, Evaluierung und Verarbeitung der Daten.
  • Eine einfach zu installierende und zu bedienende Technologie, die ohne grossen Wartungsaufwand über Jahre hinweg funktioniert.
  • Eine professionelle Vorbereitung der Messorte.

Um diesem anspruchsvollen Auftrag zu entsprechen, wurde unter anderem der Modbus Sensor DTM.OCS.S/N/RS485 verwendet. Die digitalen Pegelsonden messen sowohl Pegel als auch Temperatur. Den rauen Bedingungen wird durch ein robustes Design und erlaubten Umgebungsstemperaturen von -40 bis 80 Grad Celsius entsprochen. Die Genauigkeit von ≤ 0.03 % FS stellt präzise Ergebnisse an kritischen Messpunkten sicher.

Weitere Vorteile der digitalen Pegelsonde auf einen Blick:

  • hochpräziser digitaler Pegelsensor für einfache Einbindung in Standard Modbus Netzwerk
  • individuelle Anpassung an die Anwendung durch modularen Aufbau
  • höchste Präzision über den gesamten Temperaturbereich dank elektronischer Kompensation
  • Einstellung von Nullpunktverschiebung und Messspanne über Modbus
  • hohe Langzeitstabilität der Messzelle
  • rekalibrierbarer Sensor
Pegellogger überwachen Wasserstand in Venedig

Pegellogger überwachen Wasserstand in Venedig

Der Markusplatz säuft nicht ab: Um den Grundwasserspiegel am Markusplatz kontinuierlich zu messen, kommen Datenlogger aus dem Hause STS zum Einsatz. Diese sind besonders robust und eignen sich für den Einsatz in verschiedenen Anwendungen.

2003 hat die Firma S.P.G. begonnen, am Markusplatz in Venedig mehrere Grundwasser Datenlogger zu installieren. Diese sind für die spezifischen Anforderungen ausgelegt und besitzen vor allem die Eigenschaft, mehrere Tage unter salzhaltigem Wasser auszuhalten, da der Markusplatz bei steigender Flut regelmäßig überschwemmt wird. Die Baustelle steht im Zusammenhang mit den von der Gewässeraufsichtsbehörde eingeleiteten Arbeiten zum Schutz der Lagune und der Stadt Venedig vor Hochwasser.

Das beauftragte Konsortium Venezia Nuova sah den Neubau der Kaianlage gegenüber dem Markusplatz mit innovativen technischen Einzelheiten vor. Die Anforderung bestand darin, den Verlauf des Grundwassers zu überwachen, das sich nach und nach vom Baustellenbereich zu den dahinter liegenden Gebäuden verschob. Daher wurden auf Anforderung des Auftraggebers Pegel-Datenlogger von STS installiert, um kontinuierlich die Schwankungen des Grundwasserspiegels zu messen.

Der Grundwasser Datenlogger ermöglicht die gleichzeitige Messung von Pegel, Temperatur und Leitfähigkeit im Bereich von 0…50 cmWS bis 0…250 mWS, -5 bis 50 °C und 0,020…20 mS/cm. Bei Bedarf kann der Anwender jederzeit eine Datenfernübertragungs-Einheit nachrüsten. Der Logger zeichnet sich die durch einfache, benutzerfreundliche Bedienung, einen großen Messwertspeicher von bis zu 1.5 Millionen Messwerten und einen Sondendurchmesser von nur 24 mm bzw. 10 mm aus.

Die steckbaren Ausführungen bieten die Möglichkeit der Kabelverlängerung. Neue Softwarefunktionen lassen sich ohne umständliche Rücksendung durch den Anwender aktualisieren. Die handelsübliche Lithium batterie lässt sich mit wenigen Handgriffen vor Ort austauschen. Daten können im ASCII- oder XML-Format übertragen und in Standard-Software wie Excel weiter verarbeitet werden. Variable Speicherintervalle in Abhängigkeit vom Druck oder der Zeit erlauben vielfältige Messungen.

Durch die Verwendung verschiedener Materialien wie Edelstahl, Titan, PUR, PE oder Teflonkabel wird eine hohe Medienverträglichkeit für verschiedenste Anwendungen wie Deponien, Altlasten, Pumpversuche, Hochwassermeldungen und Abschlagserfassung an Regenüberlaufbecken erreicht.

Erstpublikation:   Magazin konstruktion 

Wasser trotz Trockenzeit

Wasser trotz Trockenzeit

Wasserbau Experten des Karlsruher Instituts für Technologie (KIT) haben in einer Karsthöhle auf der indonesischen Insel Java ein unterirdisches Stauwerk mit integrierter Wasserkraftanlage errichtet. Das 100m unter der Erdoberfläche gelegene Kraftwerk liefert nun während der Trockenzeit reichlich Wasser aus der Höhle. Dabei messen zwei Datenlogger die Wasserhöhe vor und hinter der Staumauer. Der Pegel des Oberwassers beträgt 15 – 20 m, während er im Unterwasser, wo das Wasser wieder aus der Turbine austritt, höchstens 2 m erreicht.

Das Karstgebiet Gunung Kidul an der Südküste Javas ist eine der ärmsten Regionen Indonesiens. Für eine ertragreiche Ernte ist der Boden zu karg und in der Trockezeit versiegen die Fliessgewässer. Das Wasser der Regenzeit versickert zwar rasch, es sammelt sich aber in einem unteririschen Höhlensystem. Dieser natürliche Wasserspeicher wurde mit dem Höhlenkraftwerk erschlossen. Die Tatsache, dass selbst in der Trockenzeit über 1’000 Liter Wasser/s durch die Höhle Bribin fliessen, spricht für die ideale Lage des Stauwerks. Anstelle komplexer Turbinen wird die mechanische Energie zum Antrieb der Förderpumpen über invers betriebene Kreispumpen erzeugt. Die fünf parallel betriebenen Fördermodule sind somit sehr kostengünstig und benötigen lediglich geringen Betriebs- und Wartungsaufwand. Die Förderpumpen drücken einen Teil des Wassers 220 m hoch in einen auf einem Berg gelegenen Speicher mit dem Namen Kaligoro-Reservoir. Mit dem geglückten Probeeinstau wurde der Knackpunkt des Projekts überwunden. Die Höhle hält das Wasser tatsächlich und die notwendige Stauhöhe von 15 m wird erreicht.

Im März 2010 wurde die Anlage an die indonesischen Behörden übergeben. Nun kann sie 80’000 Menschen mit bis zu 70 Liter Wasser am Tag versorgen. Bisher standen den Bewohnern in der Trockenzeit 5 – 10 Liter am Tag für Körperpflege, Haushalt und Vieh zur Verfügung. Übrigens, jeder Deutsche verbraucht dafür im Schnitt 120 Liter.

Funktion der Drucklogger

Die Drucklogger messen die Wasserhöhe vor und hinter der Staumauer. Die Normalhöhe ist 15 m, im Hochwasserfall kann es bis zu 20 m werden. Die andere Sonde misst den Wasserstand im Unterwasser, nämlich dort, wo das Wasser aus der Turbine austritt. Dort werden Höhen bis 2 m erfasst. Die Wahl fiel auf den Drucklogger von STS wegen ihrer hohen Überlastfestigkeit von 3x Messbereichsendwert, der geringen Kennlinienabweichtung von maximal 0,1% und der hohen Langzeitstabilität zwischen 0,1 % und 0,5 % FS pro Jahr.

Die Pegellogger bieten Druckbereiche zwischen 0 – 100 mbar und 0 – 600 bar und ermöglichen somit Pegelmessungen im Bereich von 0 – 100 cmWS bis 0 – 6’000mWS. Das Messintervall ist zwischen 0,5 s und 24 h einstellbar. Der Messwertspeicher von bis zu 1,5 Millionen Messwerten und ein geringer Sondendurchmesser zeichnen die Geräte aus. Ausserdem kann man handelsübliche Litiumbatterien mit wenigen Handgriffen vor Ort austauschen.

Variable Speicherintervalle in Abhängigkeit vom Druck oder der Zeit erlauben flexible Messungen. Durch die Verwendung verschiedener Materialien wie Edelstahl, Titan, PUR, PE oder Teflonkabel erreicht man eine hohe Medienverträglichkeit für verschiedenste Anwedungen. Neben der Pegelaufzeichnung von Grundwasser, Brunnen, Bohrlöchern, Seen und Flüssen eignen sich die Pegellogger auch zur Dichtigkeitsprüfung im Gas-, Wasser- und Rohrleitungsbau, zur Rohrnetzanalyse sowie zur Druckprüfung im Gas-, Wasser- und Fernwärmerohrnetz. Auch in Gasdruck-Regelstationen sowie zum Nachweis eines konstanten Versorgungsdrucks haben sie sich optimal bewährt.

Quellen:   Karlsruher Institut für Technologie (KIT) – Institut für Wasser und Gewässerentwicklung (IWG)

Hydrostatische Druckmessung mit piezoresistiven Pegelsonden

Hydrostatische Druckmessung mit piezoresistiven Pegelsonden

Lebensspender, Lebensgefahr oder einfach nur eine Erfrischung im Sommer: Das Element Wasser bestimmt das tägliche Leben auf der Erde auf vielfältige Weise. Ob seiner Bedeutung ist eine gesicherte Überwachung dieses Elements unerlässlich.

Was man nicht messen kann, kann man auch nicht effizient bewirtschaften. Von der Frischwasserförderung über die Trinkwasseraufbereitung, Trinkwasserspeicherung, die Messung des Wasserverbrauches, der Abwasseraufbereitung bis hin zur Hydrometrie: Ohne korrekte Eingangsgrössen kann nicht wirtschaftlich gearbeitet und geplant werden. Um die heute komplexe hydrometrische Infrastruktur zu erfassen, stehen eine Reihe Geräte und Verfahren zur Auswahl. Der Klassiker der Wasserstandmessung ist dabei sicherlich die Pegellatte, bei der eine Genauigkeit von +/- 1 cm anzulegen ist und die natürlich noch völlig „analog“ funktioniert – also unter Augenschein genommen werden muss und ohne elektronische Datenübertragung auskommt. Eine Remote-Übertragung der gemessenen Daten leisten dafür heute weitaus fortschrittlichere und präzisere Instrumente: Piezoresistive Drucksonden zur Wasserstandmessung in Grund- und Oberflächengewässern.

Pegelmessung mit Drucksensoren

Drucksensoren zur Pegelmessung werden am Grund des zu überwachenden Gewässers angebracht. Im Gegensatz zur Pegellatte kann man sie in aller Regel also nicht in Augenschein nehmen, ohne dabei nass zu werden. Das ist auch nicht nötig. Denn piezoresistive Pegelsonden wurden entwickelt, um den heutigen Anforderungen hinsichtlich Prozessautomatisierung und -kontrolle gerecht zu werden. Dazu gehört selbstredend, dass Pegelstände ohne menschliches Zutun gemessen werden können, was eine kontinuierliche Überwachung an schwer zugänglichen Orten erst ermöglicht.

Hydrostatische Pegelsonden erfassen den hydrostatischen Druck am Grund des Gewässers. Der hydrostatische Druck verhält sich proportional zur Höhe der Flüssigkeitssäule. Er ist des Weiteren abhängig von der Dichte der Flüssigkeit und der Erdanziehungskraft. Nach dem Pascal’schen Gesetz ergibt sich daraus die folgende Berechnungsformel:

p(h) = ρ * g * h + p0

p(h) = hydrostatischer Druck

ρ= Dichte der Flüssigkeit

g = Erdbeschleunigung 

h = Höhe der Flüssigkeitssäule

Wichtige Vorkehrungen zur reibungslosen Füllstandsüberwachung

Dadurch, dass piezoresistive Pegelsonden am Boden des Gewässers platziert werden, sind sie von Oberflächeneinflüssen geschützt. Weder Schaum noch Treibgut können die Messungen beeinflussen. Natürlich müssen sie an den zu erwartenden Bedingungen unter Wasser angepasst sein. Bei Salzwasser ist beispielsweise eine Pegelsonde mit Titangehäuse zu bevorzugen. Ist mit galvanischen Effekten zu rechnen, ist ein Messgerät aus PVDF die beste Wahl. In den meisten Süssgewässern ist ein hochwertiger Edelstahl völlig ausreichend. Darüber hinaus ist eine ausreichende Erdung der Pegelsonden unabdingbar, um beispielsweise Schäden durch Blitzeinschlag vorzubeugen (mehr zu diesem Thema lesen Sie hier).

Moderne Pegelsonden: Alle Daten, ein Gerät

Piezoresistive Pegelsonden können zur Füllstandüberwachung in offenen Gewässern wie Seen, in Grundwasservorkommen sowie in geschlossenen Tanks eingesetzt werden. Handelt es sich um ein offenes Gewässer, wird mit Relativdrucksonden gearbeitet. Bei diesen Geräten wird über eine Kapillare im Drucksondenkabel für den Luftdruckausgleich gesorgt. In Tanks wird üblicherweise ein Differenzdrucksensor verwendet, da die auf die Flüssigkeit drückende Gasdecke miteinbezogen werden muss (mehr zu diesem Thema lesen Sie hier).

Da piezoresistive Pegelsonden ihren Dienst weitestgehend autark verrichten und auch für sehr hohe Drücke optimiert werden können, sind Messungen in sehr grosser Tiefe möglich. Der Tiefe sind theoretisch kaum Grenzen gesetzt, das Drucksondenkabel muss lediglich lang genug sein.

Abbildung 1: Beispiele von Pegelsonden zur hydrostatischen Druckmessung

Abgesehen davon, dass hinsichtlich der Tiefe kaum Grenzen gesetzt sind, sind diese modernen Messgeräte auch äusserst vielseitig. Schliesslich ist nicht nur der Pegelstand eines Gewässers für den Menschen von Interesse. In Bezug auf die Überwachung von Grundwasser ist auch die Wasserqualität von grosser Bedeutung. Die Reinheit eines Grundwassereservoirs lässt sich beispielsweise auch über dessen Leitfähigkeit bestimmen: Je geringer die Leitfähigkeit, desto reiner das Wasser (mehr zum Thema Leitfähigkeit lesen Sie hier). Neben Leitfähigkeitssensoren sind Pegelsonden heute auch mit integrierter Temperaturmessung erhältlich. Somit ermöglichen piezoresistive Pegelsonden eine grosse Bandbreite an Überwachungsaufgaben und sind ohne Frage in den meisten Fällen der Pegellatte vorzuziehen.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!