Erneuerbare Ressourcen: Energiespeicherung bei Offshore-Anwendungen

Erneuerbare Ressourcen: Energiespeicherung bei Offshore-Anwendungen

Erneuerbare Ressourcen gewinnen beständig an Beliebtheit, sowohl zu Land als auch in grossen Offshore-Systemen. Es gibt jedoch ein beträchtliches Problem, das aktuell den Wachstum des Marktes sehr einschränkt: Sämtliche Energie, die produziert wird – sei es durch Nutzung von Wasser, Sonne oder Wind – muss sofort angewendet werden. Jeglicher Überschuss, welcher nicht sofort verwendet werden kann, geht unwiederbringlich verloren. Darüber hinaus können erneuerbare Ressourcen instabil sein, da sie von plötzlichen Änderungen der natürlichen Gegebenheiten abhängig sind. Das beeinflusst wiederum umgehend die Ausgangsleistung. Die Lösung für dieses Problem ist naheliegend: Es muss ein Weg gefunden werden, die Energie für den Verbrauch zu einem späteren Zeitpunkt zu speichern.

Unabhängige Energiespeicherung dank Doppelkammer-Technologie

Mit ihrem Projekt FLASC haben Ingenieure der Fakultät für Ingenieurwissenschaften an der Universität Malta einen Weg gefunden, genau das zu ermöglichen. Sie haben einen Prozess entwickelt, der es Offshore-Systemen erlaubt, überschüssige Energie effektiv zu speichern. Zur Energiespeicherung wird hierbei Druckluft eingesetzt. Ähnliche Anwendungen, die bereits in Gebrauch sind, sind vom hydrostatischen Druck abhängig. Dieser wird wiederum von der Wassertiefe beeinflusst. Im Gegensatz dazu bietet die FLASC Doppelkammer-Technologie die Möglichkeit eines unbegrenzten Druckmessbereichs, ganz gleich bei welcher Wassertiefe. So kann überschüssige Energie sicher gespeichert und in bestimmten Abständen, die sich individuell bestimmen lassen, freigegeben werden. Schlussendlich garantiert dies auch die Unabhängigkeit von natürlichen Bedingungen.

Exakte Messung mit STS ATM/N/T Sensoren

Die gesamte Technologie ist natürlich von einer stabilen Druckluft abhängig, der zu jeder Zeit gegeben sein muss. FLASC verlässt sich hier auf die effizienten ATM/N/T Sensoren von STS. Die empfindlichen Sensoren messen Druck und Temperatur an drei verschiedenen Stellen im System. Dank Gehäusematerial aus robustem Titan sind die Sensoren perfekt an den dauerhaften Einsatz in Salzwasser angepasst. Mit Hilfe des integrierten Temperaturmesselements PT100 können Temperaturen von 5 – 80°C aufgezeichnet werden. Die gesammelten Daten werden direkt an das SCADA System übertragen, wo sie in Echtzeit überwacht werden können.

Altlasten: Grundwasserdekontamination braucht robuste Pegelsonden

Altlasten: Grundwasserdekontamination braucht robuste Pegelsonden

Ob alte Mülldeponien, Kohlehalden, ehemalige Militärplätze oder Raffinerien: Übrig bleibt kontaminierter Boden, der eine Gefahr für Mensch und Umwelt ist. Bei der Sanierung dieser Orte braucht es ob der oft aggressiven Gefahrenstoffe widerstandsfähige Pegelsonden.

Altlasten sind nicht nur durch gesundheits- oder umweltschädliche Veränderungen des Bodens gekennzeichnet. Bei fehlenden Sicherungsmassnahmen (wie bei alten Mülldeponien) und je nach Bodenbeschaffenheit werden die gefährlichen Stoffe durch Regen bis ins Grundwasser gespült. Je nach Nutzungsart können eine Reihe unterschiedlicher Gefahrenstoffe angetroffen werden, darunter u.a.:

  • Schwermetallverbindungen: Kupfer, Blei, Chrom, Nickel, Zink und Arsen (Halbmetall)
  • Organische Stoffe: Phenole, Mineralöl, Benzole, chlorierte Kohlenwasserstoffe (LCKW), aromatische Kohlenwasserstoffen (PAK)
  • Salze: Chloride, Sulfate, Karbonate

Dekontamination der Grundwasserversorgung

Bei der Sanierung von Altlasten ist neben der Säuberung des Bodens auch die Kontrolle und Reinigung des Grundwassers von grosser Bedeutung. Ohne zuverlässige Pegelsonden, die den widrigen Bedingungen standhalten können, ist dies nicht möglich.

Üblicherweise läuft das Dekontaminationsverfahren wie folgt ab: Das kontaminierte Grundwasser wird an die Oberfläche gepumpt und aufbereitet. Als gefiltertes Spülwasser wird es dann wieder in den Kontaminationsherd gebracht. Damit das Spülwasser nicht zu einer dem Kontiminationsherd abgewandten Seite fliesst, werden aktive hydraulische Verfahren zur Schutzinfiltration eingesetzt. Wasser wird über mehrere Brunnen um das eigentliche Dekontaminationsverfahren herum in den Boden gegeben. Die dadurch hergestellten Druckverhältnisse bilden gewissermassen eine Sperrwand und bewirken, dass das Spülwasser zum Kontaminationsherd fliesst. Um diesen Prozess zu steuern und zu überwachen, braucht es Pegelsonden.

Abbildung 1: Ablauf eines Dekontaminationsverfahrens

Pegelsonden werden natürlich auch im Nachgang der Sanierungsarbeiten eingesetzt. So werden die betreffenden Stellen noch lange Zeit nach Abschluss der Arbeiten überwacht, um zu prüfen, ob es auffällige Änderungen des Wasserspiegels oder der Fliessrichtung gibt.

Natürlich werden Pegelsonden auch bei aktivem Betrieb potenziell umweltschädigender Anwendungen eingesetzt. Neuere Mülldeponien sind wie ein undurchlässiges Becken aufgebaut. Der Grundwasserspiegel unter der Deponie wird abgesenkt, so dass im Falle einer Leckage kein Wasser in angrenzende Gebiete fliessen kann. Auch hier sind die jeweiligen Wasserstände durch Pegelsonden zu überwachen.


Pegelsonden in kontaminierten Gewässern: Hohe Anforderungen

Anwender im Bereich Dekontamination von Altlasten sollten bei der Wahl geeigneter Pegelsonden sehr sorgfältig vorgehen. Aufgrund der Vielzahl von Stoffe, die im Wasser gelöst sein können, gibt es nicht die eine Lösung, die für jeden Fall verlässlich arbeitet. Dabei sind verschiedene Aspekte zu beachten, die wir im Folgenden kurz darstellen:

Materialien

Gehäuse

In den meisten Anwendungen ist ein hochwertiger Edelstahl, wie ihn STS verwendet, ausreichend, um die Messzelle vor aggressiven Stoffen zu schützen. Kommt es zu Kontakt mit Salzwasser, ist ein Titangehäuse zu wählen. Wenn mit galvanischen Effekten zu rechnen ist, sollte eine Pegelsonde aus PVDF gewählt werden.

Abbildung 2: ATM/NC chemisch beständige Pegelsonde mit PVDF Gehäuse

Sondenkabel

Weitaus kritischer als die Wahl eines geeigneten Gehäuses ist unserer Erfahrung nach die Wahl des Sondenkabels. Aufgrund von schleichenden Diffusionsprozessen ist der Prozess der Zerstörung nicht sofort ersichtlich. Oftmals ist er auch bei entstandenem Schaden nicht von aussen zu erkennen. Daher ist besondere Vorsicht bei der Konsultation von Beständigkeitstabellen geboten: Denn diese sagen in der Regel wenig über den Sonderfall Sondenkabel aus. In der Mitte eines Sondenkabels befindet sich ein Luftröhrchen, das dem Relativdruckausgleich dient. Wenn das Material des Kabels nicht zu hundert Prozent beständig ist, können Grundstoffe durch den Kabelmantel diffundieren und über das Luftröhrchen in den Sensorchip wandern.

Je nach den zu erwartenden Stoffen können Anwender bei STS auf PE-, PUR oder FEP-Kabel zurückgreifen. Letzteres kann auch bei sehr hohen Temperaturen von bis zu 110 °C eingesetzt werden.

Montage

Kabelverlegung

Alte Deponien oder Industriestandorte sind raue Umgebungen. Nicht nur die Gefahrenstoffe können die Funktionalität der eingesetzte Pegelsonden beeinträchtigen. Es ist darauf zu achten, dass der Kabelmantel nicht durch mechanische Belastungen (z.B. Schutt) beschädigt wird. Auch Scheuer- und Knickstellen sind zu vermeiden. Es empfiehlt sich daher, bei der Kabelverlegung spezielle Schutzschläuche, wie sie auch von STS angeboten werden, zu verwenden.

Zugentlastung

Die Druckfestigkeit von Pegelsonden variiert von Hersteller zu Hersteller. Bei STS sind alle Pegelsonden standardmässig bis zu 250 Meter druckfest und das Kabel ist bis zu dieser Tiefe auch für normale Zugbelastungen ausgelegt. Dennoch sollten Anwender bei schwierigen Montagebedingungen über die Verwendung einer Zugentlastung nachdenken.

Befestigung

Wird die Sonde bei fliessenden Gewässern oder Tanks mit Rührwerken eingesetzt, kann diese entweder mit einem G ½ Gewinde am Kabelaustritt (Rohrbefestigung) oder mit einer Klemmringverschraubung (15 mm) geliefert werden.

Explosionsschutz

In Anwendungen, bei denen mit einer Reihe gefährlicher Stoffe zu rechnen ist, muss unbedingt auch auf einen Explosionsschutz geachtet werden. Auskunft darüber gibt die internationalen Standards entsprechende ATEX-Zulassung.

Druckmessung: Kompressible Medien vs. inkompressible Medien

Druckmessung: Kompressible Medien vs. inkompressible Medien

Bei der Druckmessung gibt es eine Vielzahl Faktoren zu beachten. Dazu gehören natürlich auch die Eigenschaften des Mediums.

Eine grundlegende Unterscheidung ist jene, ob es sich um ein kompressibles oder inkompressibles Medium handelt. Unter kompressiblen Medien versteht man Stoffe, deren Dichten und somit auch das Volumen druckabhängig ist. Das trifft auf Gase zu. Inkompressible Medien haben unabhängig des Druckes ein konstantes Volumen. Zu dieser Kategorie zählen eher Flüssigkeiten. Es gilt jedoch festzuhalten, dass Inkompressibilität ein Idealfall ist, der in der Realität nicht existiert. Dennoch bezeichnet man in der Praxis Flüssigkeiten wie Wasser oder Hydraulik-Öl als inkompressibel, da sie in erster Näherung inkompressibel sind. Man nimmt also von Wasser in Wasserleitungen unter Normalbedingungen Inkompressibilität an, da dies Berechnungen enorm vereinfacht und die dadurch entstehenden Fehler vernachlässigbar sind.

Ein Beispiel hierfür ist die Berechnung des Volumenstroms. Da Flüssigkeiten in erster Näherung inkompressibel sind, sich die Dichte also nicht ändert, wenn bei konstantem Volumenfluss der Strömungsquerschnitt geweitet oder verengt wird (und somit eine Druckänderung herbeigeführt wird), gilt das Kontinuitätsgesetz:

Q = A1 •v1 = A2 • v2.

Für Gase gilt das Kontinuitätsgesetz in dieser Form aufgrund ihrer Kompressibilität nicht.

Damit haben wir dem nächsten Punkt bereits etwas vorgegriffen. Auch die Unterscheidung zwischen Statik und Dynamik ist wichtig. Mit Statik wird ein Kräftegleichgewicht bezeichnet. In diesem Fall tritt aufgrund des Ausgleichs von Druckunterschieden keine Strömung auf.

Anders ist dies bei der Dynamik. Hier unterschiedet man zwischen verschiedenen Strömungsarten:

  • Stationäre Strömung: Eine stationäre Strömung liegt vor, wenn die Strömungsgeschwindigkeit über die Zeit konstant ist.
  • Instationäre Strömung: Von einer instationären Strömung spricht man, wenn zeitliche Veränderungen auftreten. Das ist zum Beispiel bei Pumpen und Ventilöffnungen der Fall. Es kommt zu dynamischen Schlägen bis hin zu Druckspitzen, die auch die Rohrleitungen beschädigen können.
  • Laminare Strömung: Bei einer laminaren Strömung strömt das Fluid in sich nicht miteinander vermischenden Schichten. Es kommt zu keinen Verwirbelungen, die einzelnen Schichten können unterschiedliche Geschwindigkeiten aufweisen.

Auch Reibung spielt eine grosse Rolle. Dabei unterschiedet man zwischen äußerer und innerer Reibung. Erstere bezeichnet die Reibung, die zwischen dem Fluid und einer Wand auftritt (z.B. der Innenwand der Rohrleitung, durch die das Fluid fliesst). Eine innere Reibung findet man beispielsweise im Falle einer laminaren Strömung, wo die einzelnen Schichten des Fluids aneinander reiben. Die Reibung, die auf die Strömung wirkt, hängt von verschiedenen Parametern ab und erfordert komplexe Berechnungen. Die Parameter sind Wandrauheit, Strömungsgeschwindigkeit, Dichte und Viskosität. Letzte steht wiederum in Abhängigkeit zur Temperatur, was die Berechnung weiterhin erschwert.

Kommen wir zur Unterscheidung zwischen Statik und Dynamik zurück: Von einer statischen Druckmessung sprechen wir, wenn wir den Schweredruck (auch hydrostatischer Druck) erfassen wollen. Damit ist der Druck gemeint, der sich in einem ruhenden Fluid unter Einfluss der Erdanziehungskraft einstellt. Der hydrostatische Druck wird beispielsweise zur Erfassung von Füllständen in Tanks gemessen. Auch hier ist die Unterscheidung zwischen kompressiblen und inkompressiblen Medien essenziell, da die Berechnung des hydrostatischen Drucks von beispielsweise Wasser ungleich einfacher ist als die eines kompressiblen Gases.

Die Masse von inkompressiblen Medien ist die Dichte mal Volumen, also ist gleich Dichte mal Grundfläche mal Höhe. Für die Berechnung des hydrostatischen Drucks gilt:

p = F/ A = ρAhg/A = ρgh

ρ = Druck
F = Kraft
A = Fläche
p = Dichte
h = Höhe
g = Erdbeschleunigung

Der Druck verhält sich in dieser Gleichung proportional zur Tiefe. Die Form bzw. der Querschnitt des Behältnisses spielt dabei keine Rolle. Der hydrostatische Druck ist also unabhängig vom Volumen in einem Gefäss, sondern von der Füllhöhe. Dieses Phänomen kennt man auch als hydrostatisches Paradoxon.

Abbildung 1: Hydrostatisches Paradoxon

Hier lesen Sie mehr zur Hydrostatischen Füllstandsüberwachung auf piezoresistiver Basis in Tanks.

Während der statische Druck also zur Füllstandmessung genutzt wird, sind dynamische Druckmessungen nötig, um einen Volumenstrom bzw. eine Durchflussmenge zu messen.

Mehr dazu lesen Sie hier.