Mud Logging: Drucktransmitter müssen Bestleistung bringen

Mud Logging: Drucktransmitter müssen Bestleistung bringen

Mud Logging bezeichnet Analyseverfahren, die während Bohrprozessen an der Bohrspülung durchgeführt werden. Dafür braucht es auch leistungsstarke und vor allem widerstandsfähige Drucktransmitter.

Der Begriff setzt sich aus dem englischen Wörter für Schlamm („mud“) und Erfassung („logging“) zusammen und bietet damit bereits eine recht gute, wenn auch unvollständige, Umschreibung für den involvierten Prozess: Mud Logging Spezialisten (auch Surface-Logging Specialists) werden von Bohrunternehmen beauftragt, detaillierte Aufzeichnungen über ein Bohrloch zu erstellen. Die Spezialisten analysieren die während des Bohrvorgangs an die Oberfläche gebrachten Informationen, weshalb viele Firmen auch den Begriff Surface Logging Services (SLS) verwenden. Der Bohrschlamm ist dabei die wichtigste Komponente, da er die Information von der Tiefe des Bohrlochs zur Oberfläche trägt, wo die in dem zirkulierenden Bohrmedium enthaltenen Bohrkleinteile („cuttings“) untersucht werden.

Die Analysen bilden ein tiefenabhängiges Protokoll zur Bestimmung der Tiefenposition von Kohlenwasserstoffen, zur Identifizierung der Bohrlochlithologie und zur Überwachung von Erdgas, das während der Bohrung in den Bohrschlamm eindringt. Weitere Ziele des Mud Logging sind die Bestimmung des Porendrucks und der Porosität sowie der Durchlässigkeit der gebohrten Formation, das Sammeln, Überwachen und Bewerten von Kohlenwasserstoffen, die Beurteilung der Herstellbarkeit von kohlenwasserstoffhaltigen Formationen sowie die Protokollierung von Bohrparametern. Diese Daten sind wichtig, um sichere sowie wirtschaftlich optimierte Bohrungen zu gewährleisten.

Das Mud Logging findet in Echtzeit in mobilen Laboren statt, die an der Bohrstelle eingerichtet werden. Die Echtzeitdaten werden direkt zur Bohrsteuerung verwendet. Mud Logging Dienste werden in der Regel von Spezialisten durchgeführt, die von der Bohrfirma beauftragt wurden. STS stellt einigen dieser Anbieter Drucktransmitter zur Verfügung.

Drucksensoren in Bohrprozessen: Wiederstandsfähigkeit ist der Schlüssel

Um den Bohrprozess zu überwachen, montieren Mud Logging Spezialisten verschiedene Sensoren an der Bohrvorrichtung. Die Erkennung von geringfügigen Verlusten des Bohrrohrdrucks erfordert eine sehr hohe Genauigkeit. Die Rückmeldung muss ohne Zeitverzögerung erfolgen, um mit Unregelmässigkeiten verbundene Risiken und Kosten zu vermeiden.

Bohrstellen sind harsche Umgebungen und können die eingesetzte Sensorik daher stark beanspruchen. Die zwei wichtigsten Faktoren in dieser Hinsicht sind der Bohrschlamm selbst und die Vibrationen, die bei Bohrvorgängen zu erwarten sind.

Abbildung 1: ATEX zertifizierter Drucktransmitter für Mud-Logging Anwendungen 

Um diesen harten Bedingungen gerecht zu werden, stellt STS Unternehmen, die Oberflächen-Logging-Services anbieten, den Drucktransmitter ATM/ ECO/EX mit speziell angefertigtem Gehäuse zur Verfügung. Der ATEX-zertifizierte Drucktransmitter ist für hohe Druckbereiche optimiert. Die bei Bohrvorgängen auftretenden Schwingungen beeinflussen in erster Linie die Verbindungsstelle zum Prozessanschluss. STS löste das Problem durch Doppelschweißen der Verbindung. Darüber hinaus ist das Edelstahlgehäuse dicker als in normaler Ausführung (26,5 mm). Abgesehen von den hohen Druckbereichen und den starken Vibrationen stellt der Bohrschlamm eine weitere Herausforderung dar, indem der Druckkanal möglicherweise verstopft wird. Um Verstopfungen zu vermeiden, haben wir den Kanal etwas breiter gemacht (10 mm). Normalerweise kann ein breiterer Druckkanal die Druckmembran gefährden. Da bei Anwendungen dieser Art jedoch weitgehend statische Drücken auftreten, ist dies kein Problem.

Mud Pulse Telemetry: MWD-Daten mittels Drucktransmitter übertragen

Mud Pulse Telemetry: MWD-Daten mittels Drucktransmitter übertragen

Bei der hydraulischen Datenübertragung braucht es empfindliche Drucksensoren, die gleichzeitig sehr hohen Drücken standhalten. Dies trifft besonders auf den Einsatz in Measurement While Drilling (MWD)-Anwendungen zu.

Im Rahmen von Measurement While Drilling (MWD)-Anwendungen werden Daten während Bohrungen erhoben. Besonders bei Offshore-Richtbohrungen ist MWD eine Standard-Anwendung geworden. Die Echtzeit-Datenerhebung ist essenziell, damit der Bediener des Bohrers diesen in die anvisierte Zone steuern kann. Zu diesem Zweck werden verschiedene Sensoren am Bohrkopf montiert, die Aufschluss über die Bohrumgebung in Echtzeit geben sollen. Dabei kommen Neigungs-, Temperatur-, Ultraschall- und auch Strahlungssensoren zum Einsatz. Diese verschiedenen Sensoren sind physisch oder digital miteinander verbunden und an einer Logikeinheit angeschlossen, die die Informationen in binäre Ziffern umwandelt. Diese Daten aus dem Bohrloch werden über Mud Pulse Telemetry („Schlammimpulstelemetrie“) an die Oberfläche übermittelt. Abgesehen von der Überwachung und Steuerung des Bohrvorgangs werden sie für weitere Aspekte genutzt, darunter:

  • Informationen zum Zustand der Bohrkrone
  • Protokollierung der geologischen Beschaffenheit der penetrierten Erdschichten
  • Erstellung von Leistungsstatistiken zur Identifizierung möglicher Verbesserungen
  • Risikoanalyse für zukünftige Bohrungen

Bei Mud Pulse Telemetry handelt es sich um ein binäres Kodierungsübertragungssystem, das mit Flüssigkeiten verwendet wird. Dies wird durch ein Ventil erreicht, dass den Druck des Bohrschlamms innerhalb des Bohrstrangs variiert und somit die Aufzeichnungen der am Bohrkopf montierten Sensorik in Druckimpulse umwandelt. Über den Bohrschlamm gelangen diese Pulsationen an die Oberfläche. Die Druckimpulse werden an der Oberfläche von einem Drucktransmitter gemessen und in ein elektrisches Signal umgewandelt. Dieses Signal wird an ein Lesegerät übermittelt und digitalisiert. Mittels Computern können die übermittelten Informationen rekonstruiert werden.

STS stellt Anwendern in der Offshore-Richtbohrung analoge Drucktransmitter zur Verfügung, die bei der Mud Pulse Telemetry eingesetzt werden. Die Anforderungen an die eingesetzte Sensorik sind hoch: Sie müssen extrem empfindlich sein, um bereits kleinste Druckunterschiede sicher zu registrieren. Zur gleichen Zeit müssen die Sensoren Drücken von bis zu 1.000 bar standhalten. Denn es sind bei sehr tiefen Bohrungen sehr hohe Drücke nötig, um den Bohrkopf anzutreiben. Auch die zur Mud Pulse Telemetry an der Oberfläche verwendeten Drucktransmitter sind diesen Kräften ausgesetzt.

Abbildung 1: Analoger Drucktransmitter für den Mud Pulse Telemetry Einsatz

Abgesehen von der hohen Empfindlichkeit sind auch sehr schnelle Reaktionszeiten gefragt, um eine gute Datenkommunikation in Echtzeit zu gewährleisten. Darüber hinaus sollte das Messinstrument möglichst rauscharm sein, um verfälschte Messergebnisse weitestgehend auszuschliessen. Besonders die Schlammpumpen verursachen in Bohranwendungen das meiste Signalrauschen. Auch der Antrieb des Bohrers ist eine Störquelle. Aus diesem Grund sind analoge Sensoren mit einem 4 mA … 20 mA Ausgangssignal die beste Lösung für die Mud Pulse Telemetry.

Hochgenaue Druckmessung bei hohen Temperaturen

Hochgenaue Druckmessung bei hohen Temperaturen

In manchen Anwendungen müssen Druckmessumformer bei sehr hohen Temperaturen zuverlässig arbeiten. Autoklaven, die in der Medizin- und Lebensmitteltechnik zur Sterilisation von Geräten und Instrumenten verwendet werden, sind sicherlich eine dieser anspruchsvollen Anwendungen.

Ein Autoklav ist eine Druckkammer, die in einer Vielzahl von Industrien für unterschiedliche Anwendungen verwendet wird. Sie zeichnen sich durch hohe Temperaturen und einen vom Umgebungsluftdruck verschiedenen Druck aus. Medizinische Autoklaven werden zum Beispiel verwendet, um Geräte zu sterilisieren, indem Bakterien, Viren und Pilze bei 134 °C zerstört werden. In der Druckkammer eingeschlossene Luft wird entfernt und durch heissen Dampf ersetzt. Die gängigste Methode, dies zu erreichen, ist das Gravitationsverfahren: Dampf tritt in die Kammer ein und füllt die oberen Bereiche. Dabei wird die kühlere Luft nach unten verdrängt. Diese wird dort über einen Abfluss aus der Kammer geführt. Dieser Prozess endet, sobald die gesamte Luft entfernt wurde und die Temperatur im Autoklav 134 °C beträgt.

Sehr genaue Messung bei hohen Temperaturen

Druckmessumformer werden in Autoklaven zur Überwachung und Validierung eingesetzt. Da Standard-Drucksensoren üblicherweise bei Raumtemperatur kalibriert werden, können sie unter den in Autoklaven auftretenden heissen und nassen Bedingungen nicht die beste Genauigkeit liefern. Piezoresistive Drucksensoren sind relativ temperaturempfindlich. Temperaturfehler können jedoch ausgeglichen werden. Mittels einer entsprechenden Kalibrierung können die Geräte für die in einzelnen Anwendungen auftretenden Temperaturen optimiert werden. Wenn Sie beispielsweise einen Standard-Druckmessumformer verwenden, der bei Raumtemperatur eine Genauigkeit von 0,1 Prozent erreicht, kann das Gerät bei Verwendung in einem Autoklaven mit Temperaturen von bis zu 134 °C nicht die gleiche Genauigkeit liefern.

Ein Unternehmen aus der pharmazeutischen Industrie fragte daher bei STS nach einer Lösung, die auch in einem Autoklav höchste Präzision liefert: gefordert war ein Drucktransmitter, der bei 134 °C einen Gesamtfehler von weniger als 0,1 Prozent über einen Druckmessbereich von -1 bis 5 bar leistet.

Mittels einer entsprechenden Kalibrierung können Drucksensoren für unterschiedliche Temperaturbereiche optimiert werden. Die Kalibrierung eines Drucksensors für bestimmte Temperaturbereiche war im Fall des oben angesprochenen Kunden aus der Pharmaindustrie jedoch nur eine der Herausforderungen, die es zu meistern galt: Nicht nur das Sensorelement sollte bei 134 °C im Autoklav hochgenau arbeiten, auch der komplette Drucktransmitter inklusive aller Elektronik sollte in die Druckkammer. Leider können wir an dieser Stelle nicht näher darauf eingehen, wie wir einen digitalen Drucktransmitter zusammenbauen konnten, der die geforderten Genauigkeitswerte einhält und dessen Komponenten den heissen und feuchten Bedingungen im Autoklav standhalten. Wir können aber verraten, dass es möglich ist.

Kurzum: Piezoresistive Drucksensoren reagieren empfindlich auf Temperaturänderungen. Mit dem richtigen Know-how können sie jedoch für die Anforderungen einzelner Anwendungen optimiert werden. Darüber hinaus kann nicht nur das Sensorelement entsprechend kalibriert werden, der gesamte Drucktransmitter kann so gebaut werden, dass auch heisse und nasse Bedingungen bewältigt werden können.

Elektronische Druckmessung: Vergleich der gängigen Messprinzipien

Elektronische Druckmessung: Vergleich der gängigen Messprinzipien

Elektronische Druckmessumformer kommen in einer Vielzahl Anwendungen zum Einsatz, von der Maschinentechnik über die verarbeitende Industrie bis hin zur Lebensmittel- und Pharmaindustrie. Die Erfassung der physikalischen Grösse Druck kann über verschiedene Messprinzipien erfolgen. Wir stellen die gängigen Prinzipien vor.

In der elektronischen Druckmessung wird üblicherweise zwischen Dünnfilmsensoren, Dickschichtsensoren und piezoresistiven Drucksensoren unterschieden. Gemein ist allen drei Messprinzipien, dass die physikalische Grösse Druck in ein messbares elektrisches Signal umgewandelt wird. Grundlegend für alle drei Messprinzipien ist ebenso eine Wheatstonesche Messbrücke, einer Messeinrichtung zur Erfassung elektrischer Widerstände, die aus vier zusammengeschalteten Widerständen besteht.

Piezoresistive Drucksensoren: Hochpräzise und kostengünstig

Piezoresistive Drucksensoren basieren auf Halbleiter-Dehnungsmessstreifen (DMS). Das verwendete Material hierfür ist Silizium. Auf einem Siliziumchip werden vier zu einer Wheatstoneschen Messbrücke verbundene Widerstände eindiffundiert. Bei Druck verformt sich der Siliziumchip. Durch diese Verformung ändert sich die Leitfähigkeit der eindiffundierten Widerstände. Aus dieser Widerstandsänderung kann letztlich der Druck abgelesen werden.

Da das piezoresistive Sensorelement sehr empfindlich ist, muss es vor dem Einfluss des Messmediums abgeschirmt werden. Der Sensor befindet sich daher in einem Druckmittler. Die Druckübertragung erfolgt über eine das Sensorelement umgebende Flüssigkeit. In der Regel handelt es sich dabei um ein Silikonöl. In hygienegerechten Anwendungen wie in der Lebensmittel- oder Pharmaindustrie werden allerdings auch andere Übertragungsflüssigkeiten eingesetzt. Eine trockene Messzelle, aus der im Schadensfall keine Flüssigkeit austritt, ist nicht möglich.

Die Vorteile:

  • sehr hohe Empfindlichkeit, Drücke im mbar-Bereich messbar
  • hoher Messbereich möglich, von mbar bis 2’000 bar
  • sehr hohe Überlastsicherheit
  • hervorragende Genauigkeit von bis zu 0,05 Prozent der Spanne
  • kleine Sensorbauform
  • sehr gutes Hystereseverhalten und gute Wiederholbarkeit
  • Basistechnologie vergleichsweise günstig
  • statische und dynamische Drücke

Die Nachteile:

  • benötigt Übertragungsmedium
  • Temperaturkompensation erforderlich

Dünnfilmsensoren: Langzeitstabil und preisintensiv

Anders als bei piezoresistiven Drucksensoren basieren Dünnfilmsensoren auf einem metallischen Grundkörper. Auf diesen werden die vier zu einer Wheatstoneschen Messbrücke verschalteten Widerstände mit einem so genannten Sputter-Verfahren aufgebracht. Der Druck wird also ebenfalls durch eine durch Verformung verursachte Widerstandsänderung erfasst. Neben den Dehnungsmessstreifen können auch Temperaturkompensationswiderstände eingefügt werden. Eine Übertragungsflüssigkeit wie bei piezoresistiven Drucksensoren ist nicht nötig.

Die Vorteile:

  • sehr kleine Baugrösse
  • Drücke bis zu 8.000 bar sind messbar
  • ausgezeichnete Langzeitstabilität
  • keine Temperaturkompensation nötig
  • hohe Genauigkeit
  • hoher Berstdruck
  • statische und dynamische Drücke

Die Nachteile:

  • geringere Empfindlichkeit als piezoresistive Drucksensoren, daher sind tiefe Drücke schlechter messbar
  • Basistechnologie vergleichsweise teuer

Dickschichtsensoren: Besonders korrosionsbeständig

Als Basiswerkstoff für Dickschichtsensoren dient Keramik (Aluminiumoxid-Keramik). Diese Drucksensoren sind monolithisch, was bedeutet, dass der Sensorkörper aus nur einem Werkstoff besteht. Dieser Umstand stellt eine ausgezeichnete Langzeitstabilität sicher. Darüber hinaus ist Keramik gegenüber aggressiven Medien besonders korrosionsfest. Bei dieser Art von Sensor wird die Wheatstonesche Messbrücke mittels Dickschichttechnologie auf den Grundkörper gedruckt und bei hoher Temperatur eingebrannt.

Die Vorteile:

  • sehr gute korrosionsbeständigkeit
  • keine Temperaturkompensation nötig
  • hohe Langzeitstabilität
  • erfordert keinen Druckmittler

Die Nachteile:

  • zur Messung dynamischer Drücke eher ungeeignet
  • nach oben begrenzter Druckbereich (etwa 400 bar)
Die physikalische Grösse Druck und die unterschiedlichen Druckarten

Die physikalische Grösse Druck und die unterschiedlichen Druckarten

Neben der Temperatur zählt der Druck zu den am häufigsten gemessenen physikalischen Grössen in industriellen Anwendungen. Es gibt allerdings verschiedene Masseinheiten für und Arten von Druck. Im Folgenden erklären wir die grundlegenden Begriffe.

Druck beschreibt die auf eine Fläche (A) wirkende Kraft (F) und wird mit dem Formelzeichen p angegeben:

p= F/A

Nach dem internationalen Einheitssystem wird die SI-Einheit von Druck Pascal (Pa) genannt. Die Bezeichnung geht auf den französischen Mathematiker Blaise Pascal (1623 – 1662) zurück und wird aus den SI-Einheiten Meter und Newton wie folgt abgeleitet: 1 Pa = 1 N/m2.

Das Pascal ist eine sehr kleine Druckeinheit. In industriellen Anwendungen greift man daher in der Regel auf die Einheit bar zurück. Die verwendeten Einheiten zur Angabe eines Druckes variieren von Anwendungsgebiet zu Anwendungsgebiet. So wird Pa für Druckmessungen in Reinräumen benutzt. Die Meteorologie greift auf die Einheit hPa zurück. Der Blutdruck wird hingegen in der Einheit mmHg gemessen. Wie sich diese einzelnen Einheiten zueinander verhalten wird in der unten stehenden Umrechnungstabelle deutlich.

Abbildung 1: Umrechungstablle Druckeinheiten

Die Druckarten

Für Anwender ist es wichtig, die verschiedenen Druckarten unterscheiden zu können, um den idealen Drucktransmitter für ihre Anwendung zu wählen.

Für die Druckmessung ist die Unterteilung in Absolut-, Differenz- und Relativdruck entscheidend.

Absolutdruck

Der absolute Druck bezieht sich auf den Druck Null. Damit ist ein luftleerer Raum gemeint, wie er beispielsweise in den Weiten des Universums oder in einem idealen Vakuum herrscht. Der Messdruck ist demnach immer grösser als der Referenzdruck. Zur besseren Unterscheidung von den anderen Druckarten wird der Absolutdruck mit dem Index abs kenntlich gemacht: Pabs.

Absolutdrucksensoren nutzen als Referenzdruck ein im Sensorelement eingeschlossenes Vakuum. Dieses befindet sich auf der Sekundärseite der Membran. Neben meteorologischen Anwendungen werden Absolutdrucksensoren auch oft in der Verpackungsindustrie eingesetzt (z.B. bei der Herstellung von Vakuumverpackungen).

Abbildung 2: Übersicht der unterschiedlichen Druckarten

Relativdruck 

Der Relativdruck referenziert den atmosphärischen Druck. Der atmosphärische Druck wird mit dem Index amb gekennzeichnet. Dabei handelt es sich um den Druck, der durch die erdumhüllende Luftschicht wirkt. Dieser Druck nimmt bis zu einer Höhe von ca. 500 Kilometer kontinuierlich ab (ab dieser Höhe herrscht absoluter Druck). Der atmosphärische Druck entspricht auf Meereshöhe in etwa 1013 mbar und schwankt bei Hoch- und Tiefdrucklagen um zirka fünf Prozent.

Im Unterschied zu einem Absolutdrucksensor ist die Sekundärseite eines Relativdrucksensors offen, um einen Druckausgleich zum Atmosphärendruck zu gewährleisten. Neben Relativdruck ist auch die Bezeichnung Überdruck üblich. Von einem positiven Überdruck spricht man, wenn der absolute Druck höher als der Atmosphärendruck ist. Ist dies nicht der Fall, wird von einem negativen Überdruck gesprochen (früher war auch die Bezeichnung Unterdruck gebräuchlich).

Als praktisches Beispiel für eine Relativdruckmessung soll der Reifendruck eines Fahrzeuges dienen: Werden bei einem Luftdruck von 1 bar einem Reifen 2 bar relativer Druck zugeführt entspricht dies 3 bar Absolutdruck.

Differenzdruck

Beim Differenzdruck wird der Druckunterschied zwischen zwei beliebigen Drücken angegeben. Aus diesem Grund besitzen Differenzdrucksensoren zwei Druckanschlüsse.

Ein Anwendungsbeispiel für die Differenzdruckmessung ist die hydrostatische Druckmessung in geschlossenen Tanks.

Mehr dazu lesen Sie hier.