Geomorphometrie zur hydro-geomorphologischen Analyse in einem mediterranen Entwässerungsgebiet

Geomorphometrie zur hydro-geomorphologischen Analyse in einem mediterranen Entwässerungsgebiet

Zusammenfassung des Forschungsberichts

Ziel des Forschungsberichts ist ein objektbasiertes geomorphometrisches Verfahren anzuwenden, um Abflussgebiete zu definieren und eine hydro-geomorphologische Analyse in einem 3-km2 grossen Entwässerungsgebiet in Süditalien zu unterstützen.

Tägliche und sub-stündliche Daten zum Abfluss und der elektrischen Leitfähigkeit wurden über einen Zeitraum von drei Jahren gesammelt und aufgezeichnet. Hydro10 Chemograph Analysen dieser erhobenen Daten zeigten eine starke saisonale hydrologische Reaktion im Entwässerungsgebiet, die sich von dem in den Nass- und Trockenperioden vorkommenden Oberflächenabfluss unterschieden. Diese Analyse ermöglichte es uns, auf ein erhöhtes Überschwemmungsausmass bezogene, hydrochemische Signaturen zu definieren. Fortschreitend umfasst dies verschiedene Abflusskomponenten (Basisabfluss, unterirdischer, Oberflächenabfluss) und einen anwachsenden Zuströmbereich für den Abfluss.

 

Wasserspiegel- und Abfluss-Messungen

Es wurden Feldstudien und Wasserspiegel-/Abfluss-Messungen während eines gewählten Storm Events durchgeführt. Die Messungen erlaubten uns, spezifische Abflussquellen mit homogenen geomorphologischen Einheiten zu identifizieren und kartographieren, die vorher als hydro-geomorpho-types definiert waren (Quellenpunkte, diffuse Aussickerung entlang des Hauptkanals, Aussickerung entlang des Uferkorridors, diffuser Abfluss von Hängen). Den von Autoren für objektbasiertes geomorphologisches Kartographieren vorgeschlagenen Vorgehensweisen folgend, wurde eine hydro-geomorphologisch orientierte Segmentierung und Klassifizierung mit einem e-Cognition (Trimble, Inc) Paket durchgeführt.

Lesen Sie hier die gesamte Forschungsarbeit in englischer Sprache.

Quelle:   Domenico Guida1, Albina Cuomo (1), Vincenzo Palmieri (2)
(1) Department of Civil Engineering, University of Salerno, Fisciano, 84084, Italy
(2) ARCADIS, Agency for Soil Defense of the Campania Region, 5 Naples, Italy

Naturgefahren vorhersagen: Pegelmessung im Gletschersee

Naturgefahren vorhersagen: Pegelmessung im Gletschersee

Die Gletscher der Alpen sind im ständigen Wandel. Durch Abtauen im Frühjahr und Sommer können Seen entstehen, deren Pegel kontinuierlich überwacht werden müssen, um Hochwasser frühzeitig zu erkennen. Dafür braucht es verlässliche Drucksensoren, Pegelsonden und Datenlogger.

Die international tätige Schweizer Firma Geopraevent entwickelt, installiert und betreibt hochwertige Alarm- und Überwachungsanlagen für verschiedene Naturgefahren, darunter Lawinen, Erdrutsche, und Hochwasser. Je nach Aufgabe und lokalen Verhältnissen werden die Systeme individuell konzipiert und realisiert. Zurzeit sind weltweit mehr als 60 Alarm- und Überwachungssysteme im Einsatz. Wenn es um Naturkatastrophen geht, gibt es angesichts der möglicherweise gravierenden Folgen kein Spielraum für Fehler: Die eingesetzte Technik muss über Jahre hinweg stabil funktionieren. Daher ist auch jedes System mit Geopraevents Servern zur Sicherstellung eines fehlerfreien Betriebes verbunden.

Pegelmessung an den Plaine-Morte-Gletscher-Seen

Dies gilt auch für das 2011 beauftragte System zur Überwachung des Plaine-Morte-Gletschers in den Berner Alpen. Sobald die Temperaturen im Frühjahr steigen, beginnt der Gletscher zu schmelzen (siehe Video). Durch das Schmelzwasser bilden sich jedes Jahr drei Seen (Faverges-See, Vatseret-, und Strubel-See), die über die Sommermonate beständig anschwellen und sich schliesslich wieder entleeren.

Gefahr für die nahe gelegene Gemeinde Lenk, welche das Projekt in Auftrag gab, entsteht hauptsächlich durch den Faverges-See. Wie die anderen beiden Seen existiert er nur in den warmen Jahreszeiten. Nach seiner jährlich wiederkehrenden Entstehung durch Schnee- und Gletscherschmelze erwärmt sich das Wasser in den darauffolgenden Monaten und sucht sich einen Abfluss durch das Eis. Nach und nach wird dieser Abflusskanal immer weiter aufgeschmolzen, womit sich die Ausflussrate stetig erhöht. So bahnten sich beispielsweise im August 2014 20 Kubikmeter Wasser pro Sekunde über den Trüebach in Richtung Lenk. Nach der Entleerung des Gletschersees beginnt der Kreislauf im nächsten Frühjahr mit Einsetzen der Schmelze erneut.

Um einen Gletscherseeausbruch vorherzusagen und entsprechende Schutzmassnahmen einzuleiten, wurde von Geopraevent ein Überwachungssystem installiert, das eine Frühwarnzeit von ein bis zwei Tagen ermöglicht. Bei der Realisierung dieses Projektes wurde dank hervorragender Eigenschaften hinsichtlich Langzeitstabilität unter anderem auch auf Sensortechnik von STS zurückgegriffen.

Gletscherseeausbruch-Alarm per SMS

Um die Gefahr durch die Gletscherseen stets realistisch einschätzen zu können, wurden insgesamt vier Messstationen eingerichtet: Jeweils eine in den drei Seen sowie im Trüebach, über den das Wasser bei einer Gletscherseeentleerung zur Gemeinde Lenk fliesst.

Der Wasserstand der drei Gletscherseen wird mithilfe von Drucksensoren überwacht. Zu diesem Zweck wurden die Messinstrumente mit einem Hubschrauber in die tiefste Stelle des jeweiligen Sees getaucht. Über ein Kabel sind die Pegelsonden ATM/N/T mit auf einer Erhöhung befestigten Datenloggern verbunden. Die eingesetzten Datenlogger sind in diesem Fall solarbetrieben. Die erhobenen Daten werden über Mobilfunk an Geopraevent übertragen. Übermittelt der Datenlogger sinkende Pegelstände, ist dies ein deutliches Zeichen für eine Entleerung des entsprechenden Gletschersees.

Messstation am Plaine-Morte-Gletscher (Bild: Geopraevent)

Zusätzlich zur Seepegelmessung überwacht ein Pegelradar den Füllstand des Trüebachs. Diese zusätzliche Messstation dient der Verifizierung, dass sich der Gletschersee auch tatsächlich in Richtung der Gemeinde entleert. Da der Trüebach durch eine Schlucht verläuft, wird der Pegelradar an einem über die Schlucht gespannten Stahlseil befestigt. Auch der Pegelradar ist über ein Kabel mit einem Datenlogger verbunden.

Sobald die vorab definierten Grenzwerte in den Seen und dem Trüebach unter- bzw. überschritten werden, werden die Verantwortlichen der Gemeinde Lenk automatisch per SMS informiert und können entsprechende Schritte zum Hochwasserschutz einleiten.

Besserer Schutz vor Klimaanomalien mit zuverlässigen Pegelsonden

Besserer Schutz vor Klimaanomalien mit zuverlässigen Pegelsonden

Russland hatte in den vergangenen Jahren verstärkt mit Umweltkatastrophen aufgrund extremer Wetterbedingungen zu kämpfen. Das führte nicht nur zu massiven materiellen Schäden, sondern kostete auch Menschenleben. Ein umfangreiches Strukturprogramm für bessere Wettervorhersagen soll die Risiken eindämmen und die Forschung zum Klimawandel unterstützen.

Wetteranomalien wie eine ausgedehnte Dürre im Jahr 2010 oder schwere Hochwasser in der Amurregion im Jahr 2013 sorgten für grosse Aufmerksamkeit und Betroffenheit in Russland und darüber hinaus. Der Bundesdienst für Hydrometeorologie und Umweltüberwachung (Roshydromet) ist in Russland für hochpräzise Wettervorhersagen zuständig und soll im Rahmen des Hydrometeorological Services Modernization Project-II weiter gestärkt werden. Daher werden etwas mehr als 139 Millionen Dollar investiert.

Das gross angelegte Modernisierungsprojekt unterstützt Roshydromet dabei, die russische Bevölkerung sowie kommunale Regierungen mit zuverlässigen und zeitnahen Informationen zu Wetter, Hydrologie und Klima zu versorgen. Gleichzeitig soll Russland besser in das globale System meteorologischer Dienste integriert werden.

Die einzelnen Projekt-Massnahmen enthalten:

  • die Stärkung der Informations- und Kommunikationstechnologien zur Bereitstellung von Daten zu Wetter, Klima und Hydrologie,
  • die Modernisierung des Beobachtungsnetzwerks,
  • die Stärkung von Institutionen,
  • einen optimierten Zugriff auf Daten und Informationen von Roshydromet,
  • die Verbesserung das Katastrophenschutzes.

Bei der Modernisierung von Roshydromets hydrologischem Beobachtungsnetzwerk in den Flüssen Lena, Jana, Indigirka, Vilui und Kolyma lag besonderes Augenmerk auf Überwachungstechnologie, die weitestgehend wartungsfrei in schwer zugänglichen Gebieten und unter rauen Bedingungen wie Permafrost zuverlässig arbeitet.

Abb. 1: Übersicht der Messstellen

Ein Teil der dafür nötigen Messensorik wurde von STS bereitgestellt und in Zusammenarbeit mit dem russischen Partnerunternehmen Poltraf CIS Co. Ltd. an 40 hydrologischen Messstationen installiert. Das Projekt beinhaltete folgende Anforderungen:

  • Die permanente Überwachung von Wasserstand und Wassertemperatur sowie die Messung von Regen und Schnee. Dazu gehört auch die Installation von Überwachungskameras, um die Entstehung von Eis an strategisch wichtigen Punkten im Blick zu behalten.
  • Die automatische und störungsfreie Übermittlung der Daten via GPS oder Satellit.
  • Eine Alarmfunktion bei der Überschreitung definierter Grenzwerte.
  • Eine Serverlösung zur Speicherung der gesammelten Daten mit einer Software zur Visualisierung, Evaluierung und Verarbeitung der Daten.
  • Eine einfach zu installierende und zu bedienende Technologie, die ohne grossen Wartungsaufwand über Jahre hinweg funktioniert.
  • Eine professionelle Vorbereitung der Messorte.

Um diesem anspruchsvollen Auftrag zu entsprechen, wurde unter anderem der Modbus Sensor DTM.OCS.S/N/RS485 verwendet. Die digitalen Pegelsonden messen sowohl Pegel als auch Temperatur. Den rauen Bedingungen wird durch ein robustes Design und erlaubten Umgebungsstemperaturen von -40 bis 80 Grad Celsius entsprochen. Die Genauigkeit von ≤ 0.03 % FS stellt präzise Ergebnisse an kritischen Messpunkten sicher.

Weitere Vorteile der digitalen Pegelsonde auf einen Blick:

  • hochpräziser digitaler Pegelsensor für einfache Einbindung in Standard Modbus Netzwerk
  • individuelle Anpassung an die Anwendung durch modularen Aufbau
  • höchste Präzision über den gesamten Temperaturbereich dank elektronischer Kompensation
  • Einstellung von Nullpunktverschiebung und Messspanne über Modbus
  • hohe Langzeitstabilität der Messzelle
  • rekalibrierbarer Sensor
Pegellogger überwachen Wasserstand in Venedig

Pegellogger überwachen Wasserstand in Venedig

Der Markusplatz säuft nicht ab: Um den Grundwasserspiegel am Markusplatz kontinuierlich zu messen, kommen Datenlogger aus dem Hause STS zum Einsatz. Diese sind besonders robust und eignen sich für den Einsatz in verschiedenen Anwendungen.

2003 hat die Firma S.P.G. begonnen, am Markusplatz in Venedig mehrere Grundwasser Datenlogger zu installieren. Diese sind für die spezifischen Anforderungen ausgelegt und besitzen vor allem die Eigenschaft, mehrere Tage unter salzhaltigem Wasser auszuhalten, da der Markusplatz bei steigender Flut regelmäßig überschwemmt wird. Die Baustelle steht im Zusammenhang mit den von der Gewässeraufsichtsbehörde eingeleiteten Arbeiten zum Schutz der Lagune und der Stadt Venedig vor Hochwasser.

Das beauftragte Konsortium Venezia Nuova sah den Neubau der Kaianlage gegenüber dem Markusplatz mit innovativen technischen Einzelheiten vor. Die Anforderung bestand darin, den Verlauf des Grundwassers zu überwachen, das sich nach und nach vom Baustellenbereich zu den dahinter liegenden Gebäuden verschob. Daher wurden auf Anforderung des Auftraggebers Pegel-Datenlogger von STS installiert, um kontinuierlich die Schwankungen des Grundwasserspiegels zu messen.

Der Grundwasser Datenlogger ermöglicht die gleichzeitige Messung von Pegel, Temperatur und Leitfähigkeit im Bereich von 0…50 cmWS bis 0…250 mWS, -5 bis 50 °C und 0,020…20 mS/cm. Bei Bedarf kann der Anwender jederzeit eine Datenfernübertragungs-Einheit nachrüsten. Der Logger zeichnet sich die durch einfache, benutzerfreundliche Bedienung, einen großen Messwertspeicher von bis zu 1.5 Millionen Messwerten und einen Sondendurchmesser von nur 24 mm bzw. 10 mm aus.

Die steckbaren Ausführungen bieten die Möglichkeit der Kabelverlängerung. Neue Softwarefunktionen lassen sich ohne umständliche Rücksendung durch den Anwender aktualisieren. Die handelsübliche Lithium batterie lässt sich mit wenigen Handgriffen vor Ort austauschen. Daten können im ASCII- oder XML-Format übertragen und in Standard-Software wie Excel weiter verarbeitet werden. Variable Speicherintervalle in Abhängigkeit vom Druck oder der Zeit erlauben vielfältige Messungen.

Durch die Verwendung verschiedener Materialien wie Edelstahl, Titan, PUR, PE oder Teflonkabel wird eine hohe Medienverträglichkeit für verschiedenste Anwendungen wie Deponien, Altlasten, Pumpversuche, Hochwassermeldungen und Abschlagserfassung an Regenüberlaufbecken erreicht.

Erstpublikation:   Magazin konstruktion 

Wasser trotz Trockenzeit

Wasser trotz Trockenzeit

Wasserbau Experten des Karlsruher Instituts für Technologie (KIT) haben in einer Karsthöhle auf der indonesischen Insel Java ein unterirdisches Stauwerk mit integrierter Wasserkraftanlage errichtet. Das 100m unter der Erdoberfläche gelegene Kraftwerk liefert nun während der Trockenzeit reichlich Wasser aus der Höhle. Dabei messen zwei Datenlogger die Wasserhöhe vor und hinter der Staumauer. Der Pegel des Oberwassers beträgt 15 – 20 m, während er im Unterwasser, wo das Wasser wieder aus der Turbine austritt, höchstens 2 m erreicht.

Das Karstgebiet Gunung Kidul an der Südküste Javas ist eine der ärmsten Regionen Indonesiens. Für eine ertragreiche Ernte ist der Boden zu karg und in der Trockezeit versiegen die Fliessgewässer. Das Wasser der Regenzeit versickert zwar rasch, es sammelt sich aber in einem unteririschen Höhlensystem. Dieser natürliche Wasserspeicher wurde mit dem Höhlenkraftwerk erschlossen. Die Tatsache, dass selbst in der Trockenzeit über 1’000 Liter Wasser/s durch die Höhle Bribin fliessen, spricht für die ideale Lage des Stauwerks. Anstelle komplexer Turbinen wird die mechanische Energie zum Antrieb der Förderpumpen über invers betriebene Kreispumpen erzeugt. Die fünf parallel betriebenen Fördermodule sind somit sehr kostengünstig und benötigen lediglich geringen Betriebs- und Wartungsaufwand. Die Förderpumpen drücken einen Teil des Wassers 220 m hoch in einen auf einem Berg gelegenen Speicher mit dem Namen Kaligoro-Reservoir. Mit dem geglückten Probeeinstau wurde der Knackpunkt des Projekts überwunden. Die Höhle hält das Wasser tatsächlich und die notwendige Stauhöhe von 15 m wird erreicht.

Im März 2010 wurde die Anlage an die indonesischen Behörden übergeben. Nun kann sie 80’000 Menschen mit bis zu 70 Liter Wasser am Tag versorgen. Bisher standen den Bewohnern in der Trockenzeit 5 – 10 Liter am Tag für Körperpflege, Haushalt und Vieh zur Verfügung. Übrigens, jeder Deutsche verbraucht dafür im Schnitt 120 Liter.

Funktion der Drucklogger

Die Drucklogger messen die Wasserhöhe vor und hinter der Staumauer. Die Normalhöhe ist 15 m, im Hochwasserfall kann es bis zu 20 m werden. Die andere Sonde misst den Wasserstand im Unterwasser, nämlich dort, wo das Wasser aus der Turbine austritt. Dort werden Höhen bis 2 m erfasst. Die Wahl fiel auf den Drucklogger von STS wegen ihrer hohen Überlastfestigkeit von 3x Messbereichsendwert, der geringen Kennlinienabweichtung von maximal 0,1% und der hohen Langzeitstabilität zwischen 0,1 % und 0,5 % FS pro Jahr.

Die Pegellogger bieten Druckbereiche zwischen 0 – 100 mbar und 0 – 600 bar und ermöglichen somit Pegelmessungen im Bereich von 0 – 100 cmWS bis 0 – 6’000mWS. Das Messintervall ist zwischen 0,5 s und 24 h einstellbar. Der Messwertspeicher von bis zu 1,5 Millionen Messwerten und ein geringer Sondendurchmesser zeichnen die Geräte aus. Ausserdem kann man handelsübliche Litiumbatterien mit wenigen Handgriffen vor Ort austauschen.

Variable Speicherintervalle in Abhängigkeit vom Druck oder der Zeit erlauben flexible Messungen. Durch die Verwendung verschiedener Materialien wie Edelstahl, Titan, PUR, PE oder Teflonkabel erreicht man eine hohe Medienverträglichkeit für verschiedenste Anwedungen. Neben der Pegelaufzeichnung von Grundwasser, Brunnen, Bohrlöchern, Seen und Flüssen eignen sich die Pegellogger auch zur Dichtigkeitsprüfung im Gas-, Wasser- und Rohrleitungsbau, zur Rohrnetzanalyse sowie zur Druckprüfung im Gas-, Wasser- und Fernwärmerohrnetz. Auch in Gasdruck-Regelstationen sowie zum Nachweis eines konstanten Versorgungsdrucks haben sie sich optimal bewährt.

Quellen:   Karlsruher Institut für Technologie (KIT) – Institut für Wasser und Gewässerentwicklung (IWG)