Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Wasserstoffanwendungen Archives - STS Deutschland
Deprecated: Hook wp_smush_should_skip_parse is deprecated since version 3.16.1! Use wp_smush_should_skip_lazy_load instead. in /home/xepoxenu/www/new.stssensors.com/wp-includes/functions.php on line 6078
Könnte ein Wasserstoffmotor mit Hochdruck-Direkteinspritzung den Turbodiesel ersetzen?

Könnte ein Wasserstoffmotor mit Hochdruck-Direkteinspritzung den Turbodiesel ersetzen?

In Ungnade gefallen, scheint die Zeit des einst legendären Dieseltriebwerks abgelaufen zu sein. Selbst Städte wie Paris, die einst Anreize für die Verwendung von Dieselmotoren schufen, fordern OEMs jetzt auf, die Produktion bis zum Jahr 2025 zu stoppen. Obwohl dies äußerst unwahrscheinlich ist, zeigt es, dass man sich weltweit wegen der globalen Erwärmung und der Luftverschmutzung im allgemeinen Sorgen macht.

Um die immer strenger werdenden Emissionsvorschriften einhalten zu können, untersuchen OEMs neue und oft unerprobte Arten des Antriebs: Die ganze Bandbreite von Vollelektrifizierung bis hin zu Hybriden und sogar Wasserstoff-Brennstoffzellen werden als mögliche Lösungen getestet.

Insbesondere Wasserstoff weckt das Interesse von Forschern auf der ganzen Welt – er wird als ein sauberer Brennstoff gefeiert, der durchaus den Verkehr der Zukunft antreiben könnte.

Der Unterschied zwischen Wasserstoff und konventionellen Kohlenwasserstoffen besteht in seinem großen stöchiometrischen Bereich von 4 bis 75 Volumenprozent Wasserstoff zu Luft, und unter idealen Bedingungen kann die Verbrennungsgeschwindigkeit von Wasserstoff einige Hundert Meter pro Sekunde erreichen. Diese Eigenschaften machen ihn sehr effizient bei der Verbrennung von mageren Gemischen mit niedrigen NOx-Emissionen.

Vierzig Jahre Wasserstoffmotoren

Die Wasserstoffeinspritzung gibt es schon seit den 1970er Jahren; dabei wird Wasserstoff in einen modifizierten Verbrennungsmotor eingespritzt, wodurch es zu einer saubereren Verbrennung, mehr Leistung und geringeren Emissionen kommt.

Frühere Niederdrucksysteme, die noch heute verwendet werden, spritzten den Wasserstoff in die Luft ein, bevor diese in den Brennraum eintrat. Allerdings traten dabei einige Probleme auf, da Wasserstoff zehnmal schneller verbrennt als Diesel und er, sobald er im Brennraum mit dem Diesel vermischt wird, die Abbrandgeschwindigkeit erhöht. Die wichtigsten Probleme sind:

  • Der Flammenrückschlag des Gases im Verteiler.
  • Frühzündung und/oder Selbstentzündung.

Der beste Weg, um diese Schwierigkeiten zu überwinden, ist der Einbau eines Systems zur Hochdruck-Direkteinspritzung, bei dem die Kraftstoffeinspritzung zu einem späteren Zeitpunkt des Kompressionsvorgangs erfolgt.

Optimierung des Verbrennungsprozesses durch genaue Druckmessung

Hierfür muss die Einspritzung ganz genau auf den Motor abgestimmt werden. Dies kann nur durch die Erhebung von Testdaten bezüglich der Temperatur (Verteiler, Abgas und Kühlmittel), des Drucks (Zylinder/Druckverstärker, Leitung und Einspritzer), der Verwirbelung in Verteiler und Brennkammer sowie der Gaszusammensetzung erreicht werden.

Die Gemischbildungs-, Zündungs- und Verbrennungsprozesse werden häufig mit zwei verschiedenen Arten von Experimenten untersucht. Das erste Experiment soll Informationen über die schnell veränderliche Konzentration und Verteilung von Wasserstoff während des Einspritzvorgangs liefern.

Bei diesem Test dient eine laserinduzierte Fluoreszenz (LIF) auf Markermolekülen als das primäre Messverfahren zur Untersuchung des Verhaltens von Wasserstoff während der Kompression und bei der Zündung. Unter Verwendung einer Brennkammer mit einem konstanten Volumen und denselben Abmessungen wie der eigentliche Dieselmotor, was bedeutet, dass das Volumen in der Brennkammer dem Volumen im Zylinder am oberen Totpunkt entspricht, wird komprimierter Wasserstoff durch ein hydraulisch gesteuertes Nadelventil in die kalte Druckluft eingespritzt.

Mit qualitativ hochwertigen Drucksensoren kann die Wirkung der verschiedenen Einspritzdrücke auf den Verbrennungsprozess untersucht werden. Durch die Beobachtung des Verhaltens und des Volumens des unverbrannten Gases kann der Zeitaufwand für die Optimierung des Einspritzdrucks für eine bestimmte Anzahl von und Position der Einspritzdüsenöffnung und auch der Einspritzrichtung drastisch reduziert werden.

Durch den Einsatz einer einzigartigen Software kann die Zündverzögerung ermittelt werden, die von der Temperatur und der Konzentration von Wasserstoff in der Luft bei einem gegebenen Druck abhängig ist. Auch hier ist es wichtig, dass die Druckwerte in einem Druckbereich zwischen 10 bis 30 MPa genau aufgezeichnet werden.

Darüber hinaus ermöglicht diese Methode die Bestimmung der Bereiche des Einspritzstrahls, in denen Bedingungen für eine Selbstentzündung herrschen; das ist hilfreich bei der Entwicklung eines optimierten Einspritzsystems für Motoren, die von Dieselkraftstoff auf Wasserstoff umgerüstet werden sollen.

Bei – von einem OEM im Premiumsegment – jüngst durchgeführten Tests zeigte der optimierte Hochdruck-Wasserstoffeinspritzmotor eine vielversprechende spezifische Leistungssteigerung bei gleichzeitig reduziertem Kraftstoffverbrauch und einen Wirkungsgrad von 42 %; Werte, die denen der besten Turbodieselmotoren entsprechen.

Ausgehend von diesen Erkenntnissen scheint es so, als ob durch die stetige Optimierung des Drucks dieser 30 MPa-Systeme tatsächlich eine weitere Quelle für saubere Energie für den Verkehr der Zukunft geschaffen werden kann.

Wasserstoffversprödung bei Stahl

Wasserstoffversprödung bei Stahl

Der Sensor-Chip piezoresistiver Druckmessumformer ist gewöhnlich von einer Stahlmembran umgeben. Auch für die Gehäuse der Messinstrumente wird für die meisten Anwendungen Edelstahl verwendet. Kommt es zu Wasserstoffkontakt, kann der Werkstoff spröde werden und reissen.

Wasserstoffversprödung tritt nicht nur bei Stahl, sondern auch anderen Metallen auf. Daher ist die Verwendung von Titan beispielsweise keine Alternative im Hinblick auf Wasserstoffanwendungen.

Was versteht man unter Versprödung?

Wasserstoffversprödung bezeichnet einen Verlust von Duktilität im Material. Duktilität beschreibt die Eigenschaft von Materialien, sich unter Belastung plastisch zu verformen, bevor sie brechen. Stahl kann sich je nach Sorte um mehr als 25 Prozent verformen. Materialien, die diese Fähigkeit nicht haben, nennt man brüchig.

Auch duktile Werkstoffe können brüchig, also spröde werden. Ist die Versprödung des Materials die Folge von Wasserstoffabsorption, spricht man von Wasserstoffversprödung.

Wasserstoffversprödung tritt auf, wenn atomarer Wasserstoff in den Werkstoff diffundiert. Die Voraussetzung für Wasserstoffversprödung ist in der Regel Wasserstoffkorrosion.

Wasserstoffkorrosion, auch Säurekorrosion, findet immer dann statt, wenn Sauerstoffmangel besteht und Metall in Kontakt mit Wasser kommt. Als Endprodukt der Redoxreaktion bleibt reiner Wasserstoff zurück, der das Metall oxidiert. Das Metall geht als Ionen in Lösung. Das Material wird dabei gleichmässig abgetragen.

Der durch die Redoxreaktion freigewordene Wasserstoff diffundiert dank der geringen Atomgrösse von nur etwa 0,1 Nanometer in den Stahl ein. Direkt im Metallgitter des Werkstoffs besetzt der Wasserstoff als Atom Zwischengitterplätze. Gitterstörungen vergrössern dabei das Aufnahmevermögen. Es kommt zu einer chemischen Materialermüdung, die schliesslich schon bei geringen Belastungen plötzlich Risse von innen nach aussen entstehen lassen können.

Wasserstoff und Druckmessumformer

Aufgrund der sehr geringen Grösse kann Wasserstoff nicht nur in das Material eindringen, er kann es auch gänzlich durchdringen. Es kann also nicht nur zu einer Versprödung des Werkstoffes kommen. Die Metallmembranen von piezoresistiven Drucksensoren sind sehr dünn – je dünner, desto empfindlicher und genauer arbeitet der Sensor. Diffundiert Wasserstoff in und durch die Membran (Permeation), kann er mit der den Sensor-Chip umgebenden Übertragungsflüssigkeit reagieren. In der Folge kommt es durch Wasserstoffanlagerungen zu Veränderungen der messtechnischen Eigenschaften der Messbrücke. Gleichzeitig kann es durch die Einlagerungen auch zu einer Druckerhöhung kommen, die in einer Wölbung bis hin zur völligen Zerstörung der Sensormembran resultiert.

Neben einer dickeren, dafür aber etwas ungenaueren, Membran kann dieser Prozess durch eine Goldlegierung stark verzögert und die Lebensdauer optimiert werden. Mehr dazu lesen Sie hier.

Zur Lebensdaueroptimierung von Druckmessumformern mit Wasserstoffkontakt haben wir auch eine kostenlose Infografik für Sie zusammengestellt:

Lebensdaueroptimierung von Drucktransmittern mit Wasserstoff-Kontakt

Lebensdaueroptimierung von Drucktransmittern mit Wasserstoff-Kontakt

Wasserstoff-Atome sind sehr klein. Durch diese Eigenschaft durchdringen sie auch feste Materialien. Diesen Vorgang nennt man Permeation. Mit der Zeit werden Drucktransmitter durch diesen Prozess funktionsunfähig. Die Lebensdauer kann aber optimiert werden.

Bei piezoresistiven Druckmessumformern wird der Sensor-Chip von einer Flüssigkeit, meistens Öl, umschlossen. Dieser Bereich ist wiederum von einer sehr dünnen, 15 bis 50 μm dicken Stahlmembran abgeschlossen. Aufgrund der geringen Atomgrössse von Wasserstoff kann das Gas durch das Kristallgitter von Metallen diffundieren (siehe Infografik). Mit der Zeit führt das eingedrungene Gas dazu, dass es zu einer nicht mehr tolerierbaren Signalnullpunktverschiebung kommt und sich die Stahlmembran nach aussen wölbt. Der Drucksensor ist somit unbrauchbar.

Übersicht: Die Eigenschaften von Wasserstoff

Infografik: malachy120///AdobeStock

Drucksensoren kommen bei einer Vielzahl Anwendungen in Kontakt mit Wasserstoff, sei es bei der Überwachung von Wasserstofftanks selbst, U-Booten oder der Automobilbranche. Gerade bei Letzterer kommt Wasserstoff bei der Entwicklung alternative Antriebsformen verstärkt zum Einsatz. Viele Hersteller arbeiten seit einigen Jahren an Modellen mit Brennstoffzellen, einige Städte setzen im öffentlichen Nahverkehr bereits auf Wasserstoffbusse. Die Vorteile sind nicht von der Hand zu weisen: Als Ausgangsstoffe werden lediglich Wasserstoff und Sauerstoff benötigt. Durch eine chemische Reaktion wird Energie in Form von Strom erzeugt. Dabei entstehen keinerlei Abgase (das Verbrennungsprodukt ist Wasserdampf). Darüber hinaus ist Wasserstoff im Gegensatz zu fossilen Brennstoffen in unerschöpflichen Mengen vorhanden. Die Entwicklung ist schon weit vorangeschritten, so gibt es Modelle, die auf 100 Kilometer lediglich 3 Liter Wasserstoff verbrauchen. Strecken von bis zu 700 Kilometer mit einer Tankfüllung sind zum Teil schon möglich.

Dafür sind leistungsstarke, hochpräzise Drucktransmitter nötig, die die Wasserstofftanks in den Fahrzeugen überwachen. Konkret müssen Druck und Temperatur im Wasserstofftank des Fahrzeugs überwacht werden. Dabei kommt es zu Drücken von bis zu 700 bar. Auch ein grosser Temperaturbereich muss abgedeckt werden. Natürlich ist es unabdinglich, dass die eingesetzten Drucktransmitter ihren Dienst über einen lagen Zeitraum mit der geforderten Präzision verrichten. Um die Lebensdauer des Sensors in Anwendungen mit Wasserstoff zu optimieren, gilt es verschiedene beeinflussende Faktoren zu beachten:

  • Druckbereich: Der Gasstrom durch die Sensor-Membran ist proportional zur Quadratwurzel des Gasdrucks. Ein zehnmal tieferer Druck erhöht die Lebensdauer des Sensors um rund 3 Mal.
  • Temperatur: Der Gasfluss durch die Sensor-Membran nimmt bei höheren Temperaturen zu und hängt von der Materialkonstante ab.
  • Membranstärke: Der Gasfluss ist umgekehrt proportional zur Membrandicke. Die Verwendung einer 100 μm anstelle einer 50 μm dicken Membran verdoppelt die Lebensdauer des Sensors.
  • Membranfläche: Der Gasfluss ist direkt proportional zur Membranoberfläche (das Quadrat des Membrandurchmessers). Mit einem Ø 13 mm anstelle einer Ø 18,5 mm Membran verdoppelt sich die Lebensdauer des Sensors.

Da bei Wasserstofftanks in Fahrzeugen sowohl hohe Drücke als auch grosse Temperaturschwankungen auftreten können, lässt sich die Lebensdauer der Sensoren nicht über diese zwei Faktoren beeinflussen. Auch die Faktoren Membranstärke und Membranfläche versprechen nur bedingt Abhilfe. Zwar lässt sich die Lebensdauer durch diese Faktoren verbessern, aber noch nicht optimal.

Wir haben eine gratis Infografik zum Thema für Sie zusammengestellt:

Goldbeschichtung: Die effektivste Lösung

Die Permeabilität von Gold ist um 10’000 niedriger als die von rostfreiem Stahl. Durch eine Goldbeschichtung (0.1 bis 1 μm) einer 50 μm Stahlmembran kann die Wasserstoff-Permeation deutlich effektiver unterdrückt werden als durch eine Verdoppelung der Membrandicke auf 100 μm. Im ersten Fall kann die Zeit, bis sich ein kritisches Wasserstoffgasvolumen im Inneren des Drucksensors sammelt, um den Faktor 10 bis 100 verlängert werden, im zweiten Fall nur um den Faktor zwei. Voraussetzung dafür ist eine möglichst Kanalfreie und optimierte Schweissung sowie eine weitgehend fehlerfreie Beschichtung.

Bild 1: Beispiel von einem Drucktransmitter mit goldbeschichteter Membran

Aufgrund dieser Eigenschaften von Gold hinsichtlich der Permeabilität durch Wasserstoff verwendet STS für Wasserstoff-Applikationen standardmässig mit Gold beschichtete Edelstahlmembranen.

Abonnieren Sie unserenNewsletter

Tragen Sie sich in unsere Mailingliste ein, um die neuesten Nachrichten und Updates von unserem Team zu erhalten.

Sie haben sich erfolgreich angemeldet!