Misurazione della pressione su base piezoresistiva

Misurazione della pressione su base piezoresistiva

La misurazione della pressione su base piezoresistiva è ideale per  misurare la pressione statica e offre vantaggi anche in termini di accuratezza e miniaturizzazione. In uno speciale white paper mostriamo le modalità di funzionamento della misura della pressione piezoresistiva.

Attraverso la misurazione della pressione piezoresistiva si misura la variazione di resistenza elettrica di un materiale. La variazione di resistenza dovuta alla compressione e alla trazione avviene essenzialmente in ogni materiale, ma, a differenza dei metalli, nei materiali semiconduttori è particolarmente pronunciata. Per questo motivo la misura viene applicata in particolar modo agli estensimetri realizzati con materiali semiconduttori come il silicio. In questo caso, a differenza degli estensimetri metallici, la sensibilità è più elevata ed è possibile realizzare fattori di proporzionalità positivi e negativi. La soluzione ottenuta è dunque molto più efficace con l’utilizzo del silicio piuttosto che con i metalli. 

Scopri tutto sulla misura della pressione su base piezoresistiva in un white paper gratuito ad hoc. Scoprirai tra l’altro: 

  • le differenze tra gli estensimetri in metallo e gli estensimetri a semiconduttore
  • informazioni sulla produzione dei semiconduttori (crescita del monocristallo di silicio)
  • il comportamento termico delle proprietà dei semiconduttori
  • il meccanismo d’azione dell’effetto piezoresistivo
  • la struttura della cella di misura piezoresistiva 

Dispositivo di protezione contro le esplosioni

Applicazione

Il sistema di sensori viene utilizzato per monitorare la pressione statica o dinamica (esplosione) sui sistemi di serbatoi. Viene misurata un’ampia varietà di fluidi, principalmente polveri organiche o inorganiche, coloranti, sali, solventi, alcali e acidi (pulizia) ecc. Il sensore è sempre montato al di sopra del livello massimo del serbatoio.

Sensori di pressione come dispositivi di collaudo – misurazione della pressione nel vano motore degli aerei

Sensori di pressione come dispositivi di collaudo – misurazione della pressione nel vano motore degli aerei

Come molti ingegneri hanno scoperto con loro dispiacere, avere a che fare con la misurazione della pressione nel vano motore di un aereo può essere un’esperienza delicata e frustrante. Entrano in gioco il caldo, le vibrazioni, l’orientamento e una moltitudine di altri fattori. Allora come è possibile sperare di sviluppare un metodo per ottenere letture consistenti e accurate? Beh, naturalmente ci vogliono ancora ore, giorni e molto più probabilmente mesi di test! Tuttavia, abbiamo pur sempre bisogno di un sensore di prova che possa essere all’altezza della situazione, funzionare per tutte queste condizioni variabili e produrre in modo continuativo risultati corretti e ripetibili. Dopo tutto siamo ingegneri e i risultati ripetibili sono una necessità del nostro lavoro. Fortunatamente per noi, la STS si è fatta avanti e ha realizzato una serie completa di sensori di pressione per soddisfare tutte le nostre esigenze di test. Dove queste esigenze possono variare da specifici requisiti di temperatura, vincoli di dimensione, materiali di tenuta e segnali di uscita elettrici. Tutti questi requisiti verranno coperti nell’articolo che segue dedicato all’utilizzo di trasmettitori di pressione della STS per le nostre esigenze di test.

Continuiamo con il nostro esempio sul vano motore e concentriamoci sulla pressione dell’olio. Una delle prime preoccupazioni quando si sceglie un sensore di pressione per questo test è la resistenza alla temperatura. Ovviamente c’è molto calore vicino ad un motore di un aereo, per cui dobbiamo chiederci: può il sensore essere installato da solo o ha bisogno di una protezione contro il calore? Ma ancora più importante, il sensore funzionerà correttamente quando i suoi componenti inizieranno a surriscaldarsi? Letture inconsistenti della pressione dell’olio sono l’ultimo dei desideri di un pilota! Si tratta quindi entrambe di valide domande, ma non preoccupatevi troppo. La linea di sensori di pressione della STS comprende un’eccellente resistenza alla temperatura, fino a 125° C. Questo, nella maggior parte dei casi, scioglie le nostre perplessità iniziali e permette di installare il sensore nel vano motore nella posizione più logica senza doversi preoccupare dell’interazione della temperatura. Inoltre, possiamo occuparci della posizione del sensore di prova e fare vari tentativi perfezionandola senza dover stare costantemente sull’attenti per capire se l’aumento della temperatura manipolerà i nostri risultati. Cosa che ci dà un bel po’ di flessibilità nell’ideare il nostro piano di prova.

Insieme alla posizione di montaggio, anche le dimensioni del sensore sono cruciali. Cercare di incastrare una rozza scatola vicino a un bel motore per effettuare una serie di test sulla pressione dell’olio farebbe senza dubbio sollevare qualche sopracciglio tra i presenti. Per di più, lo spazio in questa area è sempre esiguo. Ad ogni modo, è una questione che non si pone visto che la STS ha realizzato un sensore di pressione molto compatto e dal basso profilo che rende l’installazione comoda in tutta l’area coinvolta dalle operazioni. Grazie alle avanzate opzioni di personalizzazione di cui parleremo dopo, le dimensioni esatte variano da sensore a sensore. Tendono comunque a rientrare in un range di 50-60 mm. Tali dimensioni così contenute, permettono un serraggio facile utilizzando delle semplici fascette ammortizzate o qualsiasi altra squadretta senza dover impiegare il tempo a realizzare uno schema di montaggio comune o senza cercare di inventarsi un nuovo metodo di serraggio ultra complicato ogni volta che il sensore deve essere riposizionato per trovare la posizione ottimale per le letture della pressione dell’olio. Tutto considerato, è certamente un risparmio di tempo mentre noi siamo concentrati su una serie di test puntuali ed efficaci.

L’ultimo fattore che menzioneremo e che può essere preziosissimo per i test sulla pressione è la personalizzazione. Il più delle volte, i sensori di pressione facilmente disponibili sul mercato per eseguire questo genere di test hanno un ambito ben definito di funzionamento. Un’unica configurazione che funziona al meglio in “questo” range di pressione, per “questa” frequenza di raccolta, e il sensore è presente solo in “questo” design. Invece i sensori di pressione della STS offrono diverse opzioni e personalizzazioni che ci danno la libertà di non limitare il nostro test sulla base delle capacità individuali del sensore utilizzato.

Per il nostro esempio, dobbiamo naturalmente disporre di un materiale di tenuta che non contamini gli oli, né che si degradi con un’esposizione costante. Ebbene abbiamo diverse opzioni per le guarnizioni dei sensori in grado di fare proprio questo, inclusi EPDM e Viton per essere sicuri che il sensore operi al massimo delle prestazioni per l’intero svolgimento del test. O, diversamente, possiamo optare per una guarnizione metallica per assicurarci risulti corretti. Non solo, forse abbiamo bisogno di una connessione a membrana frontale, con un cavo in PUR, oltre che a un segnale di uscita di 4-20 mA. La STS è in grado di fornire esattamente tutto questo, insieme a qualsiasi numero di altre combinazioni per garantire che la connessione al processo, i segnali elettrici e di uscita, la presa di pressione e le guarnizioni siano esattamente quello di cui abbiamo bisogno. In sostanza, il sensore è scelto apposta per il nostro test e noi dobbiamo semplicemente far incastrare alcuni componenti nella pianificazione del test.

Per ricapitolare, ci è stato richiesto di progettare una serie di test sulla pressione dell’olio; e, come per la maggior parte dei test, molti dei fattori saranno manipolati. Il calore, il metodo di installazione, l’intervallo della pressione e un numero noiosamente grande di altri elementi cambieranno costantemente durante il corso del test. Per dirla tutta, abbiamo bisogno di un trasmettitore di pressione di prova che possa fare al caso nostro e produca risultati accurati in modo consistente. Ebbene, possiamo almeno stroncare subito questo problema sul nascere inserendo un sensore di pressione STS nel nostro regime di test. Gli intervalli di alte temperature e di pressione, in combinazione con le guarnizioni su misura, le connessioni al processo, i segnali elettrici e di uscita, e il design complessivo garantiscono che sia un sensore che può essere preconfigurato per calzare perfettamente nel proprio apparato di prove e non richiede che sia il tuo intero sistema ad essere riconfigurato per adattarsi al sensore.

Cabin Pressure Testing

Cabin Pressure Testing

Proper cabin pressure is crucial in the aerospace industry. After all, a pilot rendered unconscious from lack of oxygen will not be overly helpful at the controls of a complex aircraft. Therefore, it falls to the engineers to develop a stellar cabin pressure system that will withstand even the most extreme conditions. To do that, we will of course be spending a great deal of time at the bench testing and re-testing every manifold, valve, and pressure vessel. So what do we need to create an effective and resilient cabin pressurization system? An effective and resilient pressure transmitter of course! In the following article we will cover many of the possible options and applications of the STS pressure sensors and how we can use them in this situation.

As we piece together our master plan for the cabin pressure test we will want to focus our attention on two critical factors; temperature resistance and overall accuracy. For our example, let’s move forward with a turbofan aircraft. As the air enters the engine, it is compressed by a series of rotors and a portion of this compressed air is diverted towards the cabin air system for the pressurization process. Now is the time to remember the compressible flow equations. As the incoming air is compressed, the temperature will also increase very quickly. Immediately after this initial compression the cabin air is transferred to a preliminary intercooler to shed a certain amount of that heat to the ambient air.  

As you can imagine, there is a great deal heat going into this area of our system. So naturally, if we wish to install a test pressure transmitter in this space to fine-tune, or verify, our cabin pressurization process, we’ll need one that includes an exceptionally high temperature resistance. Well, the STS line of pressure sensors offers us just that with a temperature limit of 150˚ C (302°F), where the sensor will continue to the function and transmit accurate data even in these  warm conditions. Furthermore, STS has adapted a fully customizable and modular approach to their design process to give us access to many more features in addition to superb temperature tolerance.  

Once the pressurized air has been cooled sufficiently, and its pressure recorded by our test sensor, the air can proceed to the primary manifold where the still warm air is mixed with colder atmospheric air to achieve a comfortable environment for the pilot. This is yet another crucial link in our cabin pressurization process, and it is therefore very likely to be equipped with a test sensor throughout the course of system testing. However, the conditions here are vastly different from those seen in the intercooler. Will the same pressure sensor even work here? The answer from STS is, YES! The wonderfully adaptable modular approach to the STS line of pressure sensors ensures that we will always be able to order a sensor to fit our needs.  

For our purposes, the manifold is one of the last stops for the air before it is passed along to the cabin. Therefore, accurate pressure measurements are crucial to ensure that the cabin is kept at standard ground level atmospheric pressure. With that in mind, we have the capability to select the most accurate variation of the sensor at ≤± 0.05% FS. This highly precise transmitter, the ATM.1ST model, will ensure that we the engineers have reliable and consistent data for this particular stage in our cabin pressurization sequence. 

While we’re on the subject of options and modules, STS also gives us the flexibility to select from a long list of possible electrical connectors and output signal types to ensure that each sensor is precisely assembled to our needs. This saves us from the painstaking process of redesigning a test fixture to the sensor’s needs. The standard connectors that we can readily choose from include PUR, FEP, and 5-pin M16 connectors. However, if this is not exactly what we need, STS does have the capacity to work with us to create an entirely custom connector, so there’s nothing to worry about!  

The last stop in our cabin pressure system that could do with a sensor during our testing project is the outflow valve. It is here that excess air is bled off into the atmosphere if we approach the point of over-pressurizing the cabin. Just like a test sensor in the manifold, accuracy is pivotal to ensure that we are maintaining the exact desired pressure in the cabin at all times, so once again the high precision ATM.1ST line would seem a logical starting point.  

Let us briefly reiterate the stops we made along our test plan. First, we have the intercooler which serves a fundamental role as the air moves towards the passenger compartment. Therefore, this location is also fundamental for our testing and requires a sensor that can register highly accurate data while at the same time resisting the high rate of temperature exchange in that particular area. Can the options available to us with the STS sensor accomplish this? Check. Next we moved to the manifold, or air mixing box, where accuracy and consistency are paramount. What’s more, a temperature transmitter would not go amiss in this area. Can we tackle this task through STS? Check. Last stop, the outflow value, where we once again need to precisely measure and record pressure data for our test, and again we can put a big check mark next to STS pressure sensors being able to keep up. All in all, the ATM.1ST pressure sensor has the potential to fulfill all our diverse testing needs throughout a dynamic and complex aircraft system, so stride forward confidently into the world of cabin air pressure!

Iscriviti alla nostraNewsletter

Iscriviti alla nostra mailing List per ricevere le ultime notizie e gli aggiornamenti dal nostro team.

Ti sei iscritto con successo!