La forza dell’acqua: energia rinnovabile dal mare

La forza dell’acqua: energia rinnovabile dal mare

L’idea di utilizzare la forza del mare per produrre energia non è nuova. La sfida è sviluppare sistemi di conversione di energia efficienti, che mantengano bassi i costi e non nuociano all’ambiente. In Italia, in questa prospettiva, con il REWEC3 è nato un progetto promettente.

Il Resonant Wave Energy Converter (REWEC3) è una tecnologia avanzata che produce energia elettrica dall’energia delle onde del mare. Nel porto di Civitavecchia è stato installato con successo il primo impianto di questo tipo. Il principio di funzionamento segue gli impianti a colonna d’acqua oscillante (OWC, Oscillating Water Columns). 

Gli OWC hanno un grosso potenziale come fonte di energia rinnovabile a basso impatto ambientale. Quando il livello dell’acqua attorno e all’interno di un OWC si alza, dall’acqua si sposta aria in una camera di raccolta, che viene spinta in lungo e largo in un sistema Power-Take-Off (PTO). Il sistema PTO trasforma il flusso d’aria in energia. Nei modelli che convertonoil flusso d’aria in corrente elettrica il sistema PTO è costituito da una turbina bidirezionale. Ciò significa che la turbina, indipendentemente dalla direzione del flusso d’aria, gira sempre nella stessa direzione, in modo da produrre energia in modo continuativo. 

L’impianto REWEC3 di Civitavecchia nasce da un progetto di ricerca dell’Università Mediterranea di Reggio Calabria e oggi viene gestito dalla società Wavenergy.it. L’impianto è costituito essenzialmente da un cassone rinforzato in cemento. Sul lato esposto al moto ondoso il cassone presenta un condotto verticale (1) collegato sia al mare tramite un’apertura (2), sia ad una camera interna (3) mediante una seconda apertura posta sull’altro lato più in profondità (4). La camera interna contiene acqua nella parte inferiore (3a) e una sacca d’aria nella parte superiore (3b). Un condotto d’aria (5) collega la sacca d’aria all’aria circostante tramite una turbina auto rettificante (6). Il movimento delle onde provoca cambiamenti di pressione all’ingresso del condotto verticale (2) e, per questo, al suo interno (1) il livello dell’acqua si alza e si abbassa. Ciò fa sì che la sacca d’aria nella parte superiore del condotto continui alternatamente a comprimersi e ad espandersi. Questi flussi d’aria nella sacca azionano la turbina auto rettificante (6).

Il principio degli impianti REWEC3 sfrutta dunque i movimenti delle onde del mare per produrre energia. L’aria nella camera d’aria viene continuamente compressa (attraverso creste d’onda) e decompressa (mediante avvallamenti d’onda), così da produrre una corrente d’aria alternata che aziona la turbina auto rettificante. Infine, tramite un generatore coassiale viene prodotta energia elettrica.

I vantaggi che l’impianto REWEC3 offre nella produzione di energia parlano da sé:

  • L’impianto non interferisce a livello visivo con il paesaggio poiché dall’esterno è difficilmente riconoscibile.
  • Attenua l’effetto delle onde e mitiga le conseguenze delle tempeste sulla costa.
  • La fauna marina non è messa in pericolo per via della posizione in superficie delle turbine.
  • Un impianto lungo un chilometro arriva a produrre 8.000 MWh all’anno.

Naturalmente, in un impianto come il REWEC3 occorre disporre di un monitoraggio delle differenze di pressione, causate dalle onde incidenti, affidabile e veloce. Dopo numerosi test i ricercatori dell’Università Mediterranea di Reggio Calabria hanno scelto le sonde di livello ad alta precisione ATM.1ST/N della STS. Fondamentale per la decisione a favore del trasmettitore di pressione ATM.1ST/N sono stati anche i tempi di risposta molto brevi di < 1ms / 10 … 90% FS e l’ottima stabilità a lungo termine su un ampio intervallo di temperatura. Anche il fatto che gli strumenti di misurazione dell’azienda STS, grazie alla loro struttura modulare, si adattano senza problemi a diverse esigenze parla da sé. Infatti, le sonde di livello ATM.1ST/N utilizzate sono state facilmente configurabili per l’impiego con i sistemi di acquisizione della National Instruments.

Fonte immagine (rappresentazione grafica REWEC3):   Wavenergy.it

Monitoraggio del livello idrostatico nei serbatoi su base piezoresistiva

Monitoraggio del livello idrostatico nei serbatoi su base piezoresistiva

La misurazione della pressione idrostatica è uno dei metodi più affidabili e semplici per il monitoraggio del livello di riempimento nei serbatoi contenenti liquidi. Di seguito spieghiamo come funziona il monitoraggio del livello idrostatico e di cosa devono tener conto gli utenti.

Durante il monitoraggio del livello di riempimento idrostatico viene misurata l’altezza di riempimento di un liquido in un contenitore. In questo caso viene misurata la forza peso che agisce sul trasmettitore di pressione installato sul fondo del contenitore. In questo contesto la forza peso viene denominata colonna di liquido: cresce in modo proporzionale all’altezza di riempimento e funge da pressione idrostatica sullo strumento di misura. Durante il monitoraggio del livello di riempimento idrostatico bisogna sempre considerare la forza di gravità specifica del liquido. L’altezza di riempimento si calcola, dunque, con la seguente formula: 

h = p/sg 

In questa formula h sta per altezza di riempimento, p per pressione idrostatica sul fondo del serbatoio e sg per la specifica gravità del liquido. 

Nel monitoraggio del livello di riempimento idrostatico la quantità del liquido non ha alcuna importanza, poiché conta soltanto l’altezza di riempimento. Questo significa che la pressione idrostatica è la stessa in un serbatoio contenente 200 litri di liquido che si restringe verso il fondo e in un serbatoio dritto contenente 150 litri di liquido, a patto che il liquido e l’altezza di riempimento siano identici (ad es. tre metri). 

L’applicazione più facile della misurazione della pressione idrostatica è quando si ha come liquido l’acqua, dal momento che la sua gravità specifica può essere trascurata. Quando si tratta di un liquido diverso dall’acqua il trasmettitore di pressione deve essere riparametrato di conseguenza per poter compensare la gravità specifica del liquido. Una volta fatto questo, il livello di riempimento può essere rilevato,come nel caso dell’acqua, sul fondo del serbatoio attraverso la pressione idrostatica. Più complicato è quando si utilizzano diversi liquidi in un unico serbatoio, in quanto bisogna misurare non solo la pressione idrostatica sul fondo del serbatoio, ma contemporaneamente anche la gravità specifica di ciascun liquido. In questo articolo tralasciamo quest’ultimo caso e prendiamo in considerazione la misurazione della pressione idrostatica sia nei serbatoi chiusi che in quelli aperti. 

La misurazione del livello idrostatico nei serbatoi aperti e chiusi 

Nei serbatoi aperti non importa se il serbatoio si trova al di sopra del terreno o se è sotterrato, purché disponga di una apertura che permette una pressione atmosferica equilibrata all’interno e all’esterno del serbatoio. La misura della pressione idrostatica può avvenire sul fondo del serbatoio senza ulteriori aggiustamenti. Nel caso in cui non fosse possibile eseguire la misura sul fondo del serbatoio, il livello di riempimento può essere rilevato anche mediante una sonda ad immersione che, dall’alto, viene inserita nel serbatoio attraverso un cavo. 

Nei serbatoi chiusi solitamente si verificano delle pressioni di gas maggiori rispetto all’atmosfera circostante. Lo strato di gas che si trova sopra il liquido fa aumentare la pressione sul liquido stesso. Così facendo, il liquido defluisce più velocemente e si verificano meno perdite dovute all’evaporazione. I serbatoi sigillati dall’aria ambientale sono, dunque, spesso utilizzati nell’industria petrolifera e chimica. Tuttavia, lo strato di gas che preme sul liquido agisce indirettamente anche sul trasmettitore di pressione sul fondo del serbatoio e deve pertanto essere preso in considerazione per poter determinare il livello di riempimento corretto (attraverso l’aumento della pressione verrebbe altrimenti visualizzato un livello di riempimento più elevato di quello presente). Nei serbatoi chiusi, quindi, bisogna misurare due pressioni: la pressione del gas e la pressione sul fondo del serbatoio. La pressione idrostatica del liquido deriva dalla differenza della pressione del liquido misurata e dalla pressione misurata sul fondo. Questa differenza può essere poi convertita in un’indicazione del livello di riempimento del serbatoio. Per questo tipo di applicazione si utilizza normalmente un sensore di pressione differenziale. 

Osservazioni finali 

Per il monitoraggio del livello di riempimento idrostatico dei serbatoi bisogna sempre considerare due fattori: il tipo di liquido e il tipo di serbatoio. L’applicazione più semplice sarebbe il monitoraggio dei livelli dell’acqua in serbatoi aperti, in quanto con questo tipo di scenario non è necessario dover effettuare alcun tipo di aggiustamento. Quando, però, si tratta di un altro liquido, è necessario tener conto della gravità specifica del liquido. Inoltre, bisogna scegliere uno strumento di misurazione conforme alle caratteristiche del fluido. Mentre l’acciaio inossidabile può andar bene come materiale di rivestimento per la maggior parte dei fluidi, sostanze altamente corrosive possono richiedere altri materiali.

Misurazione della conducibilità in acque naturali e altri liquidi

Misurazione della conducibilità in acque naturali e altri liquidi

Quando si misura la conducibilità bisogna considerare alcune cose a seconda del liquido da esaminare. Particolare attenzione è data alla temperatura essendo il maggiore fattore determinante.

La conducibilità come grandezza si esprime in microsiemens e indica la capacità di una sostanza di condurre la corrente elettrica. La conduttanza è il reciproco della resistenza, che viene espressa in ohm. Di conseguenza, maggiore è la conduttanza, minore è la resistenza.

L’acqua pura è praticamente un non conduttore (0,055 µS/cm rispetto a 500 µS/cm dell’acqua potabile). Diventa conduttiva solo tramite sostanze disciolte al suo interno come i cloruri, i solfati e altre sostanze. Attraverso la misurazione della conducibilità è pertanto possibile determinare la purezza di un’acqua: più la conducibilità è maggiore, più ci sono sostanze disciolte nell’acqua. I tipici casi di applicazione della misurazione della conducibilità sono, ad esempio, le discariche con lo scopo di verificare l’inquinamento delle acque sotterranee. Il monitoraggio della presenza di acqua salata nelle fonti di acque sotterranee è un’altra tipica applicazione. Ciò fa della conducibilità un importante fattore per le attività di controllo nelle tecnologie ambientali al fine di trarre conclusioni sulle possibili impurità. Tuttavia, la conducibilità è solo un indicatore di inquinamento. La composizione delle sostanze presenti nell’acqua deve essere poi analizzata chimicamente. Inoltre, non tutte le sostanze che possono essere disciolte in acqua sono conduttive (ad esempio gli ormoni o i fungicidi).

Un’altra comune applicazione è il rilevamento della direzione di flusso, nonché della sua velocità. A questo scopo si aggiunge del sale all’acqua, aumentandone così la conducibilità. Attraverso misurazioni puntuali della conduttanza è possibile determinare con precisione la velocità e la direzione del flusso.

Come già accennato, la conducibilità di una sostanza dipende fortemente dalla temperatura. A temperature diverse, quindi, due campioni di una stessa sostanza possono dare valori di conducibilità diversi. Senza una compensazione della temperatura non c’è praticamente possibilità di comparare due sostanze, se queste non sono o non possono essere esaminate esattamente alla stessa temperatura. Per questo motivo, la misurazione della conducibilità e il rilevamento della temperatura sono strettamente collegati. Solitamente, infatti, durante una misurazione della conducibilità si misurano sia la conduttanza che la temperatura. Mediante la compensazione della temperatura la conduttanza viene calcolata su una temperatura di riferimento, quasi sempre di 25 °C.

Funzione di compensazione della temperatura: la sostanza è decisiva

Quale funzione di compensazione della temperatura viene utilizzata per rilevare la conducibilità alla temperatura di riferimento dipende interamente dal liquido da esaminare. Per le acque naturali si utilizza la funzione non lineare secondo la norma DIN EN 27888 sulla qualità dell’acqua.

Per soluzioni saline, acidi e alcali si utilizzano funzioni lineari. Per poter calcolare la variazione percentuale della conducibilità K per °C sulla variazione di temperatura ∆T si utilizza la seguente formula:

α = (∆K(T)/∆T)/K(25°C)*100

∆K(T) = variazione della conducibilità nell’intervallo di temperatura selezionato

∆T = variazione della temperatura nell’intervallo di temperatura selezionato

K(25°C) = conducibilità a 25°C

Infine, esaminiamo un esempio di calcolo per determinare la conducibilità di un anticalcare rapido: per ottenere i dati necessari al calcolo vengono effettuate tre misurazioni:

 

122.37 mS/cm a 20°C

133.10 mS/cm a 25°C

135.20 mS/cm a 26°C

∆K(T) = 135.20 mS/cm -122.37 mS/cm = 12.83 mS/cm

∆T = 26°C – 20°C = 6°C
K(25°C) = 133.10 mS/cm

α = ((135.20 – 122.37)/(26 – 20))/133.10*100 = 1.60 %/°C

Misura della pressione idrostatica con le sonde di livello piezoresistive

Misura della pressione idrostatica con le sonde di livello piezoresistive

Donatore di vita, elemento di distruzione o semplicemente bevuta rinfrescante in estate, l’elemento acqua determina la vita quotidiana sulla Terra in molti modi. A causa della sua importanza è essenziale un monitoraggio sicuro di questo elemento.

Quello che non può essere misurato, non può neanche essere gestito in modo efficiente. Dalla fornitura di acqua dolce, passando per il trattamento e lo stoccaggio dell’acqua potabile, la misurazione del consumo d’acqua, il trattamento delle acque reflue fino all’idrometria, senza dei parametri di ingresso corretti non è possibile eleborarla e pianificarla in modo efficiente. Per comprendere la complessa infrastruttura idrometrica odierna sono disponibili una serie di strumenti e processi. Un classico della misura del livello dell’acqua è sicuramente l’idrometro per cui bisogna applicare un’accuratezza del +/- 1 cm e che, naturalmente, funziona ancora completamento in modo “analogico”: deve, dunque, essere ispezionato visivamente e senza la possibilità di trasmettere elettronicamente i dati. Una trasmissione da remoto dei dati misurati è resa oggi disponibile da strumenti molto più avanzati e precisi: le sonde di pressione piezoresistive per la misurazione del livello nelle acque sotterranee e di superficie. 

Misura del livello con i sensori di pressione 

I sensori di pressione per la misura del livello vengono installati sul fondo dell’acqua da monitorare. Generalmente, al contrario degli idrometri, non è possibile ispezionarli senza bagnarsi, ma questo non è affatto necessario. Le sonde di livello piezoresistive, infatti, sono state sviluppate per soddisfare le esigenze di oggi in termini di automatizzazione e controllo dei processi. Tra queste rientra ovviamente il poter misurare i livelli delle acque senza l’intervento dell’uomo, cosa che permette in primo luogo un monitoraggio continuo in luoghi difficili da raggiungere. 

Le sonde di livello idrostatico rilevano la pressione idrostatica sul fondo dell’acqua. La pressione idrostatica è proporzionale all’altezza della colonna del liquido e, inoltre, è dipendente dalla densità del liquido e dalla forza di gravità. Secondo il principio di Pascal si ha così la seguente formula di calcolo: 

p(h) = ρ * g * h + p0 

p(h) = pressione idrostatica

ρ = densità del liquido

g = accelerazione terreste

h = altezza della colonna del liquido

 

Considerazioni importanti per un monitoraggio del livello di riempimento senza difficoltà 

Poiché le sonde di livello piezoresistive sono posizionate sul fondo dell’acqua, sono protette dalle influenze in superficie. Né la schiuma, né i detriti possono influenzare le misurazioni. Naturalmente le sonde devono essere adatte alle condizioni previste sott’acqua. In acqua salata, ad esempio, è preferibile una sonda di livello con corpo in titanio. Se si prevede l’effetto galvanico la scelta migliore è uno strumento di misura in PVDF. Nella maggior parte delle acque dolci è più che sufficiente un acciaio inossidabile di alta qualità. Inoltre, è indispensabile una messa a terra delle sonde di livello sufficiente per prevenire, ad esempio, i danni derivati dai fulmini (per saperne di più leggi qui). 

Le sonde di livello moderne: tutti i dati in un unico dispositivo 

Le sonde di livello piezoresistive possono essere impiegate per il monitoraggio del livello di riempimento in acque aperte come i laghi, nelle falde freatiche, così come nei serbatoi chiusi. Quando si tratta di acque aperte, si lavora con sonde di pressione relativa. Con questi dispositivi la compensazione della pressione atmosferica avviene tramite un capillare all’interno del cavo della sonda di pressione. Nei serbatoi si utilizza solitamente un sensore di pressione differenziale, poiché bisogna considerare lo strato di gas che preme sul liquido. 

Dal momento che le sonde di livello piezoresistive svolgono il proprio compito fondamentalmente in modo autonomo e possono essere ottimizzate anche per pressioni molto elevate, è possibile effettuare misurazioni in profondità molto basse. Teoricamente non ci sono quasi limiti di profondità, se non che il cavo della sonda di pressione deve essere sufficientemente lungo.

Immagine 1: esempi di sonde di livello per la misurazione della pressione idrostatica

A parte il fatto che non ci sono quasi limiti per quanto riguarda la profondità, questi strumenti di misura moderni sono anche estremamente versatili. In fin dei conti non è solo il livello delle acque ad essere di interesse per l’uomo. Quando si parla di monitoraggio delle acque freatiche è di grande importanza anche la qualità dell’acqua. La purezza di un serbatoio di acque sotterranee può ad esempio essere calcolato anche tramite la sua conducibilità: minore è la conducibilità, più pura è l’acqua (per saperne di più leggi qui). Oltre ai sensori di conducibilità, oggi le sonde di livello sono disponibili anche con la misurazione della temperatura integrata. In questo modo le sonde di livello piezoresistive permettono una vasta gamma di compiti di monitoraggio e nella maggioranza dei casi sono senza dubbio da preferire agli idrometri.

Monitoraggio del livello di riempimento per il controllo delle pompe nei serbatoi di acqua piovana e acque reflue

Monitoraggio del livello di riempimento per il controllo delle pompe nei serbatoi di acqua piovana e acque reflue

L’approvvigionamento idrico e lo smaltimento delle acque reflue variano a seconda delle caratteristiche del posto. Negli edifici in Belgio molte cantine si trovano ad un livello più basso rispetto alla rete fognaria. Lo scarico delle acque residue deve quindi essere regolato tramite delle pompe.

L’azienda belga Pumptech fornisce ai proprietari di case e agli amministratori efficienti pompe industriali attraverso cui regolare in parte il ciclo dell’acqua negli edifici. Ciò è necessario in diverse regioni del Belgio, poiché lì spesso le cantine degli edifici si trovano al di sotto della rete fognaria. 

Non potendo defluire direttamente nelle fognature, l’acqua di scarico viene temporaneamente raccolta nei serbatoi. In questi edifici spesso viene raccolta anche l’acqua piovana che viene utilizzata per i servizi igienici. L’acqua piovana presente sul tetto viene così convogliata in serbatoi sotterranei, dove è pronta per essere riutilizzata. L’acqua di scarico defluisce nei serbatoi di acque reflue separati e, da qui, viene pompata nella rete fognaria tramite le pompe. 

Sia che si tratti di serbatoi di acque reflue sia che si tratti di serbatoi di acque piovane, il monitoraggio del livello di riempimento è indispensabile per il regolare funzionamento delle pompe. A tale scopo la Pumptech impiega da ormai 15 anni le sonde ad immersione ATM.ECO/N. All’inizio il monitoraggio del livello di riempimento veniva effettuato tramite interruttori a galleggiante, ma con il tempo si è rivelata essere una soluzione insoddisfacente – soprattutto per quanto riguarda i serbatori di acque reflue. Il grande svantaggio degli interruttori a galleggiante rispetto alle sonde ad immersione è che, a causa delle contaminazioni presenti sulla superficie dell’acqua, si sporcano velocemente, non funzionando più regolarmente. E questo può avere notevoli conseguenze: tramite la misurazione del livello, infatti, si controllano le pompe. Di norma nei serbatoi ci sono da due a tre pompe. Se un livello di riempimento precedentemente impostato viene superato, entra in funzione la prima pompa, con il livello successivo più alto la seconda. Possono essere attivati anche degli allarmi, nel caso si raggiungano determinati valori limite.

Le contaminazioni trasportate attraverso l’acqua non danneggiano particolarmente le sonde ad immersione, che sono solitamente installate sul fondo del serbatoio. Dopo aver provato diversi fornitori, alla fine la scelta della Pumptech è ricaduta sulla sonda di livello analogica ATM.ECO/N della STS, poiché soddisfa meglio dei concorrenti le esigenze richieste in termini di stabilità a lungo termine. Da allora il controllo delle pompe funziona senza difficoltà. 

La sonda ad immersione ATM.ECO/N vanta una membrana completamente sigillata realizzata in acciaio inossidabile di alta qualità. Inoltre, un filtro anti-umidità posto sul cavo del connettore di pressione impedisce all’acqua o ad altre impurità di penetrare nella cella di misura. Un ulteriore punto di vantaggio: grazie ai tempi di risposta migliori rispetto alla precedente soluzione con gli interruttori a galleggiamento gli utenti vedono subito cosa succede all’interno dei serbatoi.

Qui puoi trovare la scheda tecnica della sonda di livello ATM.ECO/N (scaricabile in PDF).

Iscriviti alla nostraNewsletter

Iscriviti alla nostra mailing List per ricevere le ultime notizie e gli aggiornamenti dal nostro team.

Ti sei iscritto con successo!