CTD (conductivité, température, profondeur)

CTD (conductivité, température, profondeur)

Un CTD – acronyme de conductivité, température et profondeur – est le principal instrument utilisé pour déterminer les propriétés physiques essentielles de l’eau de mer. Il fournit aux scientifiques une représentation précise et complète de la distribution et de la variation de la température, de la salinité et de la densité de l’eau afin de comprendre comment les océans affectent la vie.

Comment cela fonctionne-t-il ?

Le CTD embarqué consiste en un ensemble de petites sondes fixées à une grande rosette métallique. La rosette est enfoncée dans le fond marin par un câble et les scientifiques surveillent les propriétés de l’eau en temps réel grâce à un câble de données qui relie le CTD à un ordinateur sur le navire. Un dispositif télécommandé permet de fermer sélectivement les bouteilles d’eau pendant la remontée de l’instrument. Un CTD standard prend entre deux et cinq heures pour collecter un ensemble complet de données, selon la profondeur de l’eau. Les échantillons d’eau sont souvent prélevés à des profondeurs spécifiques afin que les scientifiques puissent connaître les propriétés physiques de la colonne d’eau à cet endroit et à ce moment précis.

Les petits capteurs CTD à faible puissance sont également utilisés dans les instruments autonomes :

Un profileur-balise effectue des mesures répétées des courants océaniques et des propriétés de l’eau de haut en bas à travers presque toute la colonne d’eau, même en eau très profonde. Les instruments de base qu’il transporte sont un CTD pour la température et la salinité et un ACM (courantomètre acoustique) pour mesurer les courants, mais d’autres instruments peuvent être ajoutés, notamment des capteurs bio-optiques et chimiques.

Les planneurs sous-marins parcourent l’océan de manière autonome, en suivant des itinéraires préprogrammés et en faisant surface de temps en temps pour transmettre les données recueillies et accepter de nouvelles commandes. Lorsqu’ils se déplacent horizontalement dans l’océan, des vessies internes contrôlent leur flottabilité, ce qui leur permet de se déplacer dans la colonne d’eau, comme les baleines et autres animaux marins.

Les flotteurs sont des robots flottants qui prennent des profils ou des séries verticales de mesures (température et salinité, par exemple) dans les océans.

Les véhicules sous-marins autonomes (AUV) sont des véhicules robotisés programmables qui, selon leur conception, peuvent dériver, conduire ou glisser dans l’océan sans être contrôlés en temps réel par des opérateurs humains. Certains AUV communiquent avec les opérateurs de façon périodique ou continue par le biais de signaux satellites ou de balises acoustiques sous-marines afin de permettre un certain niveau de contrôle.

Quelles sont les plateformes nécessaires ?
Une variété d’autres accessoires et instruments peuvent être inclus dans l’ensemble CTD. Il s’agit notamment de bouteilles Niskin qui permettent de prélever des échantillons d’eau à différentes profondeurs pour en mesurer les propriétés chimiques, de profileurs de courant Doppler acoustiques (ADCP) qui mesurent la vitesse horizontale, et de capteurs d’oxygène qui mesurent les niveaux d’oxygène dissous dans l’eau.

Caractéristiques des capteurs du CTD

– Résistance à l’eau salée
– Haute précision
– Léger
– Faible consommation d’énergie
– Utilisation à des profondeurs allant jusqu’à plusieurs milliers de mètres

Commentaires :
Les petits capteurs CTD de faible puissance utilisés sur les instruments autonomes tels que les profileurs de colonne d’eau, les planeurs à jet, les flotteurs et les AUV sont plus complexes à utiliser. La principale difficulté est la nécessité d’étalonner les capteurs individuels. Cela est particulièrement vrai pour les instruments autonomes qui sont déployés pendant de longues périodes. (Les CTD des navires sont référencés par des données d’échantillons d’eau, qui ne sont généralement pas disponibles pour les déploiements d’instruments autonomes). Par conséquent, les capteurs doivent être stables pendant la période de déploiement, ou bien des hypothèses doivent être faites sur les propriétés de l’eau de mer et référencées aux données. Les propriétés de l’eau profonde sont généralement très stables, de sorte que les données des capteurs autonomes sont appariées aux propriétés historiques de l’eau en profondeur.

STS fournit des cellules de pression de haute précision pour cette application spécifique.
Plus d’informations sur ce produit personnalisé

L’hydrogène et les capteurs de pressions (cas du bio-fouling)

L’hydrogène et les capteurs de pressions (cas du bio-fouling)

L’encrassement biologique (bio-fouling)

L‘encrassement biologique ou bio-fouling est l‘accumulation de micro-organismes, plantes, algues ou animaux sur des surfaces humides, des entrées d‘eau, des canalisations, des grilles, des bassins et bien sûr les instruments de mesure. Ces dispositifs peuvent alors être dégradés et donc ne plus remplir correctement leur fonction.

L’antifouling

L‘antifouling regroupe les procédés qui permettent de prévenir ou de retirer ces accumulations :

  

Les revêtements toxiques spécifiques qui tuent les organismes responsables du bio-fouling. Cependant ils sont dorénavant majoritairement interdits pour des raisons environnementales suite à l‘application d‘une directive européenne sur les matériaux biocides.

Les revêtements spécifiques non-toxiques qui préviennent l‘accumulation des micro-organismes. Ces revêtements sont basés sur des polymères organiques et jouent sur leur faible énergie de surface et capacité à avoir de très faibles frottements.

L‘antifouling à ultrasons. Des émetteurs d‘ultrasons sont montés dans et autour de la coque de navires de petite et de moyenne tailles. Ce système est particulièrement adapté pour lutter contre la prolifération des algues.

Le décapage par irradiation par laser pulsé. Cette technologie est efficace face aux moules zébrées qui sont assommées ou tuées le temps d‘une microseconde où l‘eau est traversée par une haute tension électrique.

L’antifouling par électrolyse :

Les micro-organismes ne survivent pas dans un environnement composé d‘ions cuivre.

Les ions cuivre permettent l’électrolyse au contact d’une anode cuivre.

Dans la plupart des cas, le revêtement de la cuve sert ou la coque servent de cathode.

Une anode de cuivre peut être installée dans la configuration afin pour provoque l‘électrolyse entre l’anode et la cathode.

L’électrolyse peut donc aussi atteindre l’instrumentation des cuves de ballast qui subit alors des dégâts collatéraux : de la corrosion et une différence de potentiel électrique entre les matériaux.

Les effets de l’électrolyse sur les capteurs piézorésistifs

L’électrolyse crée des anions d’hydrogène (H+).

Du fait de leur charge positive, les ions H+ vont vers la cathode (cuve de ballast ou coque) où est installé le capteur.

La partie du capteur en contact avec les ions est aussi la plus fine : la membrane de mesure. Les ions H+ arrivent alors à s’infiltrer dans la cellule de mesure.

En même temps, la cathode émet des électrons du fait de la différence de potentiel.

L’ion H+ se lie a un électron formant ainsi du dihydrogène (H2) qui s’accumule dans la cellule de mesure.

Si cette réaction dure un certain temps, la concentration de H2 augmente dans la chambre de mesure et celle-ci se gonfle. Ainsi le capteur subit une dérive et relaie des valeurs incorrectes.

 

Rapport d’analyse

Des capteurs de pression en acier inoxydable en service pendant 2 à 3 ans dans des cuves de ballasts de navires ont été analysés et les recherches ont donné les résultats suivants:

En pratique, la formation de dépôts sur l’acier inoxydable ne peut pas être évitée. La formation d’hydrogène et sa pénétration doivent être impérativement considérées. C’est pourquoi sous de telles conditions la membrane de mesure doit être faite d’un matériau plus résistant à la corrosion comme le titane.

Aussi, de la corrosion peut apparaitre sur toutes les parties métalliques du capteur et notamment dans les interstices laissées par des joints ou une soudure incomplète. Dès qu’une infiltration a lieu, seulement certains réactifs se diffusent dans l’interstice, ce qui crée une différence de potentiel. Cette dernière additionnée aux différences de concentration mènent à une corrosion électrochimique dans l’interstice par l’hydrogène ou à ses alentours immédiats par l’oxygène. Ainsi, la membrane se doit d’être soudée et non simplement vissée avec un joint torique.

Recommandations techniques

Grâce aux résultats de ces analyses, STS Sensor Technik Sirnach AG a designé des capteurs piézorésistifs sans élastomère dont la membrane et le boîtier sont en titane. Cela afin de vous proposer le meilleur rapport qualité-prix-durabilité (plus de 10 ans) pour vos applications maritimes et la mesure des niveaux d’eau de mer.

Plus d’informations sur le produit STS qui répond à ces problématiques : le PTM.MT/N/Ex

 

Abonnez-vous à notre newsletter

Abonnez-vous à notre liste de diffusion pour recevoir les dernière nouvelles et mises à jour de notre équipe.

Vous vous êtes enregistré avec succès!