Sélectionner des capteurs de pression: guide pratique pour les ingénieurs en aérospatiale

Sélectionner des capteurs de pression: guide pratique pour les ingénieurs en aérospatiale

Développer et concevoir un avion est une tâche ardue et exigeante : les interminables calculs, les exigences de conception, les nombreuses simulations et refontes de design sont des processus de longue haleine. Après tous ces efforts de conception, nous sommes impatients de passer à la phase de tests ! C’est un processus très excitant : toutes les pièces en 3D, les systèmes et les composants que nous avons longuement étudiés se trouvent maintenant devant nos yeux. Il est temps de prouver que tout fonctionne parfaitement ! Pour cela, nous avons besoin d’un équipement d’enregistrement de données de premier ordre afin de vérifier précisément les performances de notre système. Nous avons également besoin de capteurs de test capables de fonctionner dans les conditions les plus extrêmes, à la fois à l’intérieur et à l’extérieur de l’avion. STS répond parfaitement à ces impératifs. La fiabilité de leurs capteurs de pression permet que les procédures de tests soient à la hauteur des systèmes que nous avons conçus. Dans la suite de cet article, nous présentons pas à pas l’ensemble des options offertes par STS et la manière de les intégrer à des systèmes existants.

Précision

Première étape, nous devons examiner de près le système que nous testons et déterminer la précision requise pour notre collecte de données. Par exemple, le système hydraulique qui contrôle les freins de l’avion fonctionne dans une plage de pression spécifique qui ne requiert pas une extrême précision du capteur de test. Par conséquent, l’option STS de ± 0,25 % PE est une option appropriée. À contrario, la pression d’huile doit être surveillée de manière bien plus précise que le circuit hydraulique des freins. Pour cela, nous pouvons choisir l’option de capteur de pression haute précision STS, qui offre le degré de précision le plus élevé avec ± 0,05 % PE. Cela permettra de garantir que la pression d’huile reste à son niveau optimal dans l’ensemble du système moteur.

Températures

Maintenant que nous avons établi la précision requise pour notre application, passons à l’intégration du capteur de pression dans notre système de tests. Les systèmes de pression d’un avion ont des caractéristiques très diverses en termes de tailles, de températures de fonctionnement et de fluides. Par conséquent, nous devons pouvoir adapter les capteurs à chacune de ces caractéristiques.

Passons maintenant à la température de fonctionnement. Dans un avion, un capteur de test peut être utilisé dans diverses conditions de températures : dans le compartiment moteur, ou encore à l’extérieur pour mesurer la pression de Pitot ou la pression du liquide de dégivrage. Les températures de fonctionnement varient donc considérablement d’un usage à un autre. Heureusement, les capteurs STS offrent une impressionnante plage de températures de fonctionnement, allant de -25 à 125 °C. Cela répond en grande partie à nos besoins spécifiques. En outre, tous les capteurs STS sont conçus pour permettre une plage de température compensée. Cela signifie que les erreurs de mesure inhérentes sont considérablement réduites. Cette caractéristique est un énorme avantage pour réaliser des tests intensifs sur nos systèmes de pression !

De plus, la plage de température mentionnée ci-dessus n’est en aucun cas figée. Si besoin, nous pouvons choisir d’équiper notre capteur d’ailettes de refroidissement pour atteindre une température maximale de 150 °C. Cette modularité peut s’avérer très utile pour positionner le capteur à côté du système d’échappement du moteur car les températures y sont particulièrement élevées. Nous pouvons aussi choisir une température minimale abaissée à -40 °C pour pouvoir utiliser le capteur à hautes altitudes. En résumer : Pour choisir un capteur adapté aux températures de fonctionnement, gardez toujours à l’esprit l’environnement applicatif !

Raccords pression

Comme mentionné précédemment, les tailles et calibrages des différents systèmes de pression d’un avion sont très variables. Par conséquent, la prochaine étape de notre processus de sélection consiste à déterminer l’emplacement optimal du capteur et à sélectionner un connecteur adapté à cet emplacement particulier. Prenons comme exemple le système de freinage d’un avion. Le système hydraulique comprend différentes tailles de durites et de composants, qui nécessitent de sélectionné l’emplacement exact du capteur pour choisir le raccordement au processus. STS propose une large gamme de tailles et de diaphragmes différents, y compris G ¼ M et G ½ M, et un choix supplémentaire de diaphragmes frontaux, Hastelloy, etc. Cette large gamme de sélection nous permet d’obtenir un capteur qui s’intègre parfaitement aux processus de test sans nécessité de modifications à l’installation, ce qui réduit grandement notre charge de travail !

Joints

Le dernier composant majeur de notre sélection de capteurs est celui qui assure l’étanchéité. Le matériau d’étanchéité du capteur dépend fortement du fluide employé dans le système de pression. Heureusement pour nous, les systèmes de pression de l’aérospatiale sont rarement soumis à des fluides corrosifs, acides ou autres substances agressives. Néanmoins, le matériau utilisé pour les joints est d’une importance capitale. Dans le cas de notre système hydraulique pour train d’atterrissage, le choix standard pour l’étanchéisation est le nitrile (NBR). Cet élastomère convient parfaitement à cette application et offre une très bonne résistance aux huiles et autres matériaux de lubrification. Toutefois, pour des usages à températures élevées ou autres environnements difficiles tels que ceux qui règnent dans un compartiment moteur, l’élastomère Viton offre une meilleure résistance à la température et une plus grande durabilité. Enfin, l’élastomère EPDM offre de très bons résultats avec les fluides de freins. Ces trois joints d’étanchéité font partie des nombreuses options d’étanchéisation offertes par STS. Pour choisir le matériau d’étanchéité, identifiez les usages et les fluides employés, et choisissez le matériau le plus adapté !

Vous disposez maintenant des informations nécessaires pour choisir des capteurs de pression adaptés aux procédures de l’aérospatiale ! Nous avons déterminé les niveaux de précision requis par rapport aux usages applicatifs des capteurs. Nous avons ensuite déterminé le niveau de résistance thermique requis pour des applications individuelles. Puis nous avons détaillé les différents diaphragmes et tailles des raccords pression pour que les capteurs soient adaptés à chaque besoin spécifique. Et enfin, nous avons expliqué les principales différences entre les nombreuses options de joints et leurs applications. Ces informations vous permettront de choisir les composants de vos capteurs de manière éclairée, et de les adapter à vos besoins pour des résultats sur-mesure !

Des contrôles de niveau de remplissage fiables dans les mines de charbon

Des contrôles de niveau de remplissage fiables dans les mines de charbon

Les mines et les mines à ciel ouvert sont bien connues pour leurs conditions de travail difficiles. Ces conditions exigeantes s’appliquent également aux technologies qui y sont déployées. Pour cette raison, des instruments de mesure durables et fiables sont nécessaires pour la surveillance des eaux souterraines.

Dix pour cent des gisements mondiaux de charbon se trouvent en Australie. L’extraction du charbon est l’un des facteurs économiques les plus importants de ce continent, qui est le premier exportateur de charbon au monde. Cependant, l’extraction de matières premières est une activité exigeante. L’opérateur d’une station australienne à ciel ouvert a contacté STS pour étudier l’implémentation d’un capteur de pression destiné à surveiller les niveaux de remplissage à des profondeurs allant jusqu’à 400 mètres.

Les opérations minières ont une forte influence sur les eaux souterraines. Les aquifères entourant les mines de charbon sont drainées, ce qui entraîne un affaissement du cône de dépression. Cet affaissement modifie les conditions hydrologiques naturelles souterraines en créant des chemins de résistance diminuée. Cela conduit alors à des infiltrations d’eau dans les fosses à ciel ouvert et dans les chantiers souterrains. En conséquence, l’eau doit être constamment pompée hors de la fosse pour assurer une extraction sûre de la matière première.

Pour contrôler le niveau des eaux souterraines et les pompes utilisées pour le drainage, les opérateurs de cette station à ciel ouvert ont besoin d’un capteur de pression permettant de surveiller le niveau de remplissage en fonction d’exigences spécifiques : une pression ambiante comprise entre 0 et 40 bars (400 mH2O) et une longueur de câble de 400 mètres. La solution générique de STS, l’ATM.ECO/N/EX, offre une gamme de mesure de « seulement » 25 bars et une longueur de câble de 250 mètres.

Mais puisque STS est spécialisé dans les solutions de mesure de pression personnalisées, ce défi ne devait pas constituer un obstacle majeur. En peu de temps, le capteur de pression à sécurité intégrée ATM.1ST/N/Ex a été développé. Il répond précisément aux exigences de pression, et il est équipé d’un câble en Téflon® de 400 mètres de long. Sa précision de 0,1 % est également convaincante. Lors du développement de ce nouveau capteur de pression, STS a décidé de l’équiper d’un câble en Téflon® doté d’un presse-étoupe scellé et d’un tube d’aération ouvert (le polyuréthane est trop souple pour cette application). De plus, un poids de lestage vissé garantit une position de mesure droite et stable. Le réducteur de tension en acier inoxydable, qui est également vissé, aide à soulager la tension sur le câble électrique. Comme l’indique la désignation de l’appareil, il bénéficie également de la certification EX pour une utilisation en zones à risques d’explosions.

Le capteur ATM.1ST/N/Ex avec réducteur de tension vissé (à gauche) et poids de lestage vissé (à droite).

En tant qu’expert en développement de capteurs de pression spécifiques, STS a été en mesure de fournir le capteur ATM.1ST/N/Ex en moins de trois semaines.

Caractéristiques du capteur ATM.1ST/N/Ex:

 

  • Plage de pression: 1─250 mH2O
  • Précision: ≤ ± 0,1 / 0,05 % PE
  • Erreur totale: ≤ ± 0,30 % PE (-5 ─ 50 °C)
  • Température de fonctionnement : -5 ─ 80 °C
  • Température du fluide: -5 ─ 80 °C
  • Signal de sortie: 4─20 mA
  • Matériaux: acier inoxydable et titane
  • Compensation électronique
  • Connexions de processus communs disponibles
La prévention des effets de corrosion causés par les liquides agressifs de l’industrie alimentaire

La prévention des effets de corrosion causés par les liquides agressifs de l’industrie alimentaire

L’acide carbonique et l’alcool peuvent mettre à rude épreuve les appareils de mesure. STS a récemment été contacté par un fabricant d’analyseurs automatiques de liquides pour étudier une solution spécifique de capteur de pression durable et précis.

Lorsque des matériaux standards sont exposés à des fluides agressifs, tels que l’alcool ou l’acide carbonique, ils subissent des effets de corrosion. Par exemple, l’acide carbonique provoque une augmentation de la concentration en hydron (H+), qui entraîne une corrosion par l’hydrogène. Une fois que la corrosion a traversé la membrane d’un capteur de pression, il devient inutilisable. C’est pourquoi l’acier inoxydable ordinaire ne suffit pas pour les applications avec des niveaux élevés d’acide carbonique.

En plus de devoir être résistant à la corrosion, le capteur de pression requis par ce fabricant doit également pouvoir supporter des pressions extrêmement basses, proches du vide. Étant donné que cette entreprise fait partie de l’industrie alimentaire, les normes d’hygiène sont extrêmement élevées. Leur processus de stérilisation impose aux équipements des conditions de fonctionnement proches du vide (similaires à celles d’un autoclave, bien que moins extrêmes). Des pressions inférieures à 0 bar peuvent constituer un danger pour l’intégrité d’un capteur de pression. Le vide peut provoquer l’aspiration et le déplacement de la membrane d’un capteur, ce qui entraine des mesures erronées voire un capteur totalement endommagé.

Pour répondre aux exigences spécifiques de ce fabricant d’analyseurs automatiques de liquides, nous avons assemblé une solution sur mesure basée sur le capteur de pression ATM.ECO. Comme matériau, nous avons choisi un acier Hastelloy extrêmement résistant à la corrosion. Pour assurer la stabilité de la membrane dans des conditions de basse pression, nous avons appliqué une colle spéciale pour fixer la membrane.

Étant donné que le capteur de pression est utilisé à température ambiante, aucune compensation de température n’a été nécessaire. La précision est plus que suffisante pour cette application particulière (0,25 % de l’échelle totale), et la pleine échelle est parfaitement adaptée aux basses pressions (plage de 1 à 15 000 psi).

La prospection pétrolière sous les fonds marins

La prospection pétrolière sous les fonds marins

De nos jours, nous disposons d’une meilleure connaissance scientifique de la surface de Mars que de nos propres fonds marins. La connaissance approfondie de la nature et de la configuration des sols sous-marins de notre planète est liée à de multiples enjeux, tels que la sécurité de la navigation, les objectifs de recherche (archéologie, études marines) et les objectifs d’exploration. Cela inclut également l’exploration des gisements sous-marins de pétrole.

Pour identifier les éventuelles réserves de pétrole sous les océans, il convient d’analyser les caractéristiques géologiques des fonds marins. Comme il s’agit généralement de zones très difficiles d’accès et situées à de grandes profondeurs, les fonds marins sont cartographiés à l’aide d’une méthode de prospection géophysique appelée sismique par réflexion.

La prospection pétrolière à l’aide de l’étude sismique par réflexion

La sismique par réflexion consiste à analyser des échos d’ondes sismiques créées artificiellement. Ces ondes se propagent sous l’eau et, à la manière d’un faisceau de lumière, sont partiellement réfractées et réfléchies lorsqu’elles atteignent les couches géologiques. La vitesse de réflexion des ondes dépend des différences de densité entre les couches adjacentes. Lorsque les ondes réfléchies retournent à la surface de l’eau, elles sont captées par des géophones qui enregistrent leur intensité et leur durée. L’analyse des données enregistrées permet ensuite de déterminer la profondeur exacte des différentes strates.

La méthode la plus courante d’analyse sismique par réflexion est appelée méthode de point milieu commun (PMC). Le but est d’obtenir une série de traces reflétant d’un même point central, puis de les compiler. Avant analyse, il est cependant nécessaire d’effectuer une correction d’obliquité à l’aide de la méthode de propagation en mode normal (NMO). Les différents points de réflexion sont alors corrigés de manière à apparaître à la bonne échelle de temps et à la bonne position.

Méthode PMC : Une mesure précise de la pression est essentielle

La prospection pétrolière est effectuée à l’aide de bateaux spécialement équipés, qui traînent de nombreux câbles de mesure pouvant atteindre plusieurs kilomètres de long. Ces câbles, nommés « streamers », sont équipés à intervalles réguliers d’hydrophones afin d’enregistrer les ondes réfléchies. Pour générer ces ondes, une source sonore est installée au début des streamers. Étant donné qu’il est impératif de connaître la position exacte (profondeur) des hydrophones pour obtenir des résultats précis, chaque hydrophone est équipé d’une cellule de mesure de pression.

Dans la prospection pétrolière sous-marine, l’implémentation des hydrophones est souvent effectuée à l’aide de cellules de mesure de pression fabriquées par STS. Étant donné qu’une précision absolue est requise dans ce processus complexe et exigeant, la technologie de mesure employée doit répondre à des exigences strictes. Puisque les streamers ne sont positionnés qu’à quelques mètres sous la surface de l’eau, les cellules de mesure doivent pouvoir afficher des pressions comprises entre 0 et 15 bars. Mais en raison de leur proximité avec la surface de l’eau, la plage de mesure réelle ne dépasse pas 2 bars (absolus). La précision requise dans cette plage de mesure correspond à une erreur totale inférieure à 0,3 %.

Les autres exigences auxquelles STS a su répondre lors du développement de ces cellules de mesure incluent les dimensions réduites du dispositif : 12 mm x 13,8 mm. En outre, puisque les hydrophones coulent lorsque le navire s’immobilise, les cellules de mesure sont étudiées pour résister à des pressions de surcharge de 100 bars tout en restant fonctionnelles. Et puisqu’il s’agit d’une application en eau salée, du titane est utilisé pour le boîtier de la cellule de mesure de pression.

La fragilisation de l’acier par l’hydrogène

La fragilisation de l’acier par l’hydrogène

La cellule de mesure des capteurs de pression piézorésistifs est généralement entourée d’une membrane en acier. Dans la plupart des applications, les boîtiers de ces instruments de mesure sont également composés d’acier inoxydable. Mais si ce matériau entre en contact avec de l’hydrogène, il peut être fragilisé et se fissurer.

La fragilisation par l’hydrogène affecte l’acier, et également tous les autres métaux. C’est pourquoi l’usage du titane n’est pas plus adapté aux applications qui utilisent de l’hydrogène.

Qu’est-ce qu’on entend par fragilisation par l’hydrogène ?

Le phénomène de fragilisation par l’hydrogène fait référence à la perte de ductilité d’un matériau. La ductilité désigne la capacité d’un matériau à se déformer plastiquement sans se rompre. L’acier, selon sa composition en éléments d’alliage, peut se déformer de plus de 25 %. Les matériaux qui ne possèdent pas cette capacité sont qualifiés de « fragiles ».

Mais les matériaux ductiles peuvent également devenir fragiles ou cassants. Lorsque cette fragilisation du matériau résulte de l’absorption d’hydrogène, on parle alors de fragilisation par l’hydrogène.

La fragilisation par l’hydrogène survient lorsque l’hydrogène atomique se diffuse dans le matériau. La fragilisation par l’hydrogène est généralement issue d’une corrosion par l’hydrogène.

La corrosion par l’hydrogène, également appelée corrosion aqueuse, se produit lorsqu’un métal est en contact avec de l’eau dans un environnement à faible niveau d’oxygène. Cette réaction d’oxydo-réduction produit de l’hydrogène pur, qui a pour effet d’oxyder le métal. Le métal se dissout sous forme de solution aqueuse composée d’ions, qui provoque une dégradation uniforme du matériau.

L’hydrogène libéré par cette réaction d’oxydo-réduction se diffuse dans l’acier en raison de sa petite taille atomique (seulement 0,1 nanomètre). L’hydrogène s’insère directement dans le treillis métallique du matériau au niveau atomique. Les imperfections qui se forment ainsi dans le treillis augmentent la capacité d’absorption et donc accélèrent la corrosion. Cela provoque une fatigue chimique du matériau, ce qui peut provoquer des fissures de l’intérieur vers l’extérieur, même à faibles charges.

L’hydrogène et les capteurs de pression

En raison de sa très petite taille atomique, l’hydrogène peut pénétrer dans l’intégralité du matériau et provoquer divers effets néfastes. Les membranes métalliques des capteurs de pression piézorésistifs sont particulièrement fines (plus elles sont fines, plus le capteur est sensible et précis). Si de l’hydrogène se diffuse à travers la membrane d’un capteur (phénomène de perméation), la réaction avec le fluide de transfert entourant la cellule du capteur peut entrainer une adsorption d’hydrogène et altérer les propriétés métrologiques du pont de mesure. Parallèlement, ces dépôts peuvent également entraîner une augmentation de la pression et causer une déformation de la membrane du capteur, voire la destruction complète de la membrane.

Outre l’utilisation d’une membrane plus épaisse (mais moins précise), ce processus peut être considérablement retardé en utilisant un alliage d’or. La durée de vie de l’unité est ainsi grandement optimisée. Consultez cet article pour en apprendre davantage.